Solve for x
x = -\frac{29}{3} = -9\frac{2}{3} \approx -9.666666667
Graph
Share
Copied to clipboard
-2x+\frac{5}{2}+\frac{5}{2}x=-\frac{7}{3}
Add \frac{5}{2}x to both sides.
\frac{1}{2}x+\frac{5}{2}=-\frac{7}{3}
Combine -2x and \frac{5}{2}x to get \frac{1}{2}x.
\frac{1}{2}x=-\frac{7}{3}-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
\frac{1}{2}x=-\frac{14}{6}-\frac{15}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{7}{3} and \frac{5}{2} to fractions with denominator 6.
\frac{1}{2}x=\frac{-14-15}{6}
Since -\frac{14}{6} and \frac{15}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x=-\frac{29}{6}
Subtract 15 from -14 to get -29.
x=-\frac{29}{6}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=\frac{-29\times 2}{6}
Express -\frac{29}{6}\times 2 as a single fraction.
x=\frac{-58}{6}
Multiply -29 and 2 to get -58.
x=-\frac{29}{3}
Reduce the fraction \frac{-58}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}