Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(-w^{2}-13w+30\right)
Factor out 2.
a+b=-13 ab=-30=-30
Consider -w^{2}-13w+30. Factor the expression by grouping. First, the expression needs to be rewritten as -w^{2}+aw+bw+30. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=2 b=-15
The solution is the pair that gives sum -13.
\left(-w^{2}+2w\right)+\left(-15w+30\right)
Rewrite -w^{2}-13w+30 as \left(-w^{2}+2w\right)+\left(-15w+30\right).
w\left(-w+2\right)+15\left(-w+2\right)
Factor out w in the first and 15 in the second group.
\left(-w+2\right)\left(w+15\right)
Factor out common term -w+2 by using distributive property.
2\left(-w+2\right)\left(w+15\right)
Rewrite the complete factored expression.
-2w^{2}-26w+60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-2\right)\times 60}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-26\right)±\sqrt{676-4\left(-2\right)\times 60}}{2\left(-2\right)}
Square -26.
w=\frac{-\left(-26\right)±\sqrt{676+8\times 60}}{2\left(-2\right)}
Multiply -4 times -2.
w=\frac{-\left(-26\right)±\sqrt{676+480}}{2\left(-2\right)}
Multiply 8 times 60.
w=\frac{-\left(-26\right)±\sqrt{1156}}{2\left(-2\right)}
Add 676 to 480.
w=\frac{-\left(-26\right)±34}{2\left(-2\right)}
Take the square root of 1156.
w=\frac{26±34}{2\left(-2\right)}
The opposite of -26 is 26.
w=\frac{26±34}{-4}
Multiply 2 times -2.
w=\frac{60}{-4}
Now solve the equation w=\frac{26±34}{-4} when ± is plus. Add 26 to 34.
w=-15
Divide 60 by -4.
w=-\frac{8}{-4}
Now solve the equation w=\frac{26±34}{-4} when ± is minus. Subtract 34 from 26.
w=2
Divide -8 by -4.
-2w^{2}-26w+60=-2\left(w-\left(-15\right)\right)\left(w-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -15 for x_{1} and 2 for x_{2}.
-2w^{2}-26w+60=-2\left(w+15\right)\left(w-2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +13x -30 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -13 rs = -30
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{13}{2} - u s = -\frac{13}{2} + u
Two numbers r and s sum up to -13 exactly when the average of the two numbers is \frac{1}{2}*-13 = -\frac{13}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{13}{2} - u) (-\frac{13}{2} + u) = -30
To solve for unknown quantity u, substitute these in the product equation rs = -30
\frac{169}{4} - u^2 = -30
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -30-\frac{169}{4} = -\frac{289}{4}
Simplify the expression by subtracting \frac{169}{4} on both sides
u^2 = \frac{289}{4} u = \pm\sqrt{\frac{289}{4}} = \pm \frac{17}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{13}{2} - \frac{17}{2} = -15 s = -\frac{13}{2} + \frac{17}{2} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.