Solve for t
t=\frac{2-a}{2a\left(a+1\right)}
a\neq -1\text{ and }a\neq 0
Solve for a
\left\{\begin{matrix}a=-\frac{\sqrt{4t^{2}+20t+1}+2t+1}{4t}\text{; }a=-\frac{-\sqrt{4t^{2}+20t+1}+2t+1}{4t}\text{, }&t\leq -\sqrt{6}-\frac{5}{2}\text{ or }\left(t\neq 0\text{ and }t\geq \sqrt{6}-\frac{5}{2}\right)\\a=2\text{, }&t=0\end{matrix}\right.
Share
Copied to clipboard
-2ta\left(a+1\right)=a-2
Multiply both sides of the equation by a+1.
-2ta^{2}-2ta=a-2
Use the distributive property to multiply -2ta by a+1.
\left(-2a^{2}-2a\right)t=a-2
Combine all terms containing t.
\frac{\left(-2a^{2}-2a\right)t}{-2a^{2}-2a}=\frac{a-2}{-2a^{2}-2a}
Divide both sides by -2a^{2}-2a.
t=\frac{a-2}{-2a^{2}-2a}
Dividing by -2a^{2}-2a undoes the multiplication by -2a^{2}-2a.
t=\frac{a-2}{-2a\left(a+1\right)}
Divide a-2 by -2a^{2}-2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}