Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-2t^{2}+40t+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-40±\sqrt{40^{2}-4\left(-2\right)\times 100}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-40±\sqrt{1600-4\left(-2\right)\times 100}}{2\left(-2\right)}
Square 40.
t=\frac{-40±\sqrt{1600+8\times 100}}{2\left(-2\right)}
Multiply -4 times -2.
t=\frac{-40±\sqrt{1600+800}}{2\left(-2\right)}
Multiply 8 times 100.
t=\frac{-40±\sqrt{2400}}{2\left(-2\right)}
Add 1600 to 800.
t=\frac{-40±20\sqrt{6}}{2\left(-2\right)}
Take the square root of 2400.
t=\frac{-40±20\sqrt{6}}{-4}
Multiply 2 times -2.
t=\frac{20\sqrt{6}-40}{-4}
Now solve the equation t=\frac{-40±20\sqrt{6}}{-4} when ± is plus. Add -40 to 20\sqrt{6}.
t=10-5\sqrt{6}
Divide -40+20\sqrt{6} by -4.
t=\frac{-20\sqrt{6}-40}{-4}
Now solve the equation t=\frac{-40±20\sqrt{6}}{-4} when ± is minus. Subtract 20\sqrt{6} from -40.
t=5\sqrt{6}+10
Divide -40-20\sqrt{6} by -4.
-2t^{2}+40t+100=-2\left(t-\left(10-5\sqrt{6}\right)\right)\left(t-\left(5\sqrt{6}+10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10-5\sqrt{6} for x_{1} and 10+5\sqrt{6} for x_{2}.
x ^ 2 -20x -50 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 20 rs = -50
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 10 - u s = 10 + u
Two numbers r and s sum up to 20 exactly when the average of the two numbers is \frac{1}{2}*20 = 10. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(10 - u) (10 + u) = -50
To solve for unknown quantity u, substitute these in the product equation rs = -50
100 - u^2 = -50
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -50-100 = -150
Simplify the expression by subtracting 100 on both sides
u^2 = 150 u = \pm\sqrt{150} = \pm \sqrt{150}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =10 - \sqrt{150} = -2.247 s = 10 + \sqrt{150} = 22.247
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.