Solve for s
s=2\sqrt{31}+13\approx 24.135528726
s=13-2\sqrt{31}\approx 1.864471274
Share
Copied to clipboard
-2s^{2}+52s=90
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2s^{2}+52s-90=90-90
Subtract 90 from both sides of the equation.
-2s^{2}+52s-90=0
Subtracting 90 from itself leaves 0.
s=\frac{-52±\sqrt{52^{2}-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 52 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-52±\sqrt{2704-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
Square 52.
s=\frac{-52±\sqrt{2704+8\left(-90\right)}}{2\left(-2\right)}
Multiply -4 times -2.
s=\frac{-52±\sqrt{2704-720}}{2\left(-2\right)}
Multiply 8 times -90.
s=\frac{-52±\sqrt{1984}}{2\left(-2\right)}
Add 2704 to -720.
s=\frac{-52±8\sqrt{31}}{2\left(-2\right)}
Take the square root of 1984.
s=\frac{-52±8\sqrt{31}}{-4}
Multiply 2 times -2.
s=\frac{8\sqrt{31}-52}{-4}
Now solve the equation s=\frac{-52±8\sqrt{31}}{-4} when ± is plus. Add -52 to 8\sqrt{31}.
s=13-2\sqrt{31}
Divide -52+8\sqrt{31} by -4.
s=\frac{-8\sqrt{31}-52}{-4}
Now solve the equation s=\frac{-52±8\sqrt{31}}{-4} when ± is minus. Subtract 8\sqrt{31} from -52.
s=2\sqrt{31}+13
Divide -52-8\sqrt{31} by -4.
s=13-2\sqrt{31} s=2\sqrt{31}+13
The equation is now solved.
-2s^{2}+52s=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2s^{2}+52s}{-2}=\frac{90}{-2}
Divide both sides by -2.
s^{2}+\frac{52}{-2}s=\frac{90}{-2}
Dividing by -2 undoes the multiplication by -2.
s^{2}-26s=\frac{90}{-2}
Divide 52 by -2.
s^{2}-26s=-45
Divide 90 by -2.
s^{2}-26s+\left(-13\right)^{2}=-45+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}-26s+169=-45+169
Square -13.
s^{2}-26s+169=124
Add -45 to 169.
\left(s-13\right)^{2}=124
Factor s^{2}-26s+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-13\right)^{2}}=\sqrt{124}
Take the square root of both sides of the equation.
s-13=2\sqrt{31} s-13=-2\sqrt{31}
Simplify.
s=2\sqrt{31}+13 s=13-2\sqrt{31}
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}