Evaluate
-p^{2}-1
Expand
-p^{2}-1
Share
Copied to clipboard
-2p+0p\left(1-q\right)+0\left(1-p\right)q-1\left(1-p\right)^{2}
Multiply 1-p and 1-p to get \left(1-p\right)^{2}.
-2p+0+0\left(1-p\right)q-1\left(1-p\right)^{2}
Anything times zero gives zero.
-2p+0+0-1\left(1-p\right)^{2}
Anything times zero gives zero.
-2p-1\left(1-p\right)^{2}
Add 0 and 0 to get 0.
-2p-\left(1-2p+p^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-p\right)^{2}.
-2p-1-\left(-2p\right)-p^{2}
To find the opposite of 1-2p+p^{2}, find the opposite of each term.
-2p-1+2p-p^{2}
The opposite of -2p is 2p.
-1-p^{2}
Combine -2p and 2p to get 0.
-2p+0p\left(1-q\right)+0\left(1-p\right)q-1\left(1-p\right)^{2}
Multiply 1-p and 1-p to get \left(1-p\right)^{2}.
-2p+0+0\left(1-p\right)q-1\left(1-p\right)^{2}
Anything times zero gives zero.
-2p+0+0-1\left(1-p\right)^{2}
Anything times zero gives zero.
-2p-1\left(1-p\right)^{2}
Add 0 and 0 to get 0.
-2p-\left(1-2p+p^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-p\right)^{2}.
-2p-1-\left(-2p\right)-p^{2}
To find the opposite of 1-2p+p^{2}, find the opposite of each term.
-2p-1+2p-p^{2}
The opposite of -2p is 2p.
-1-p^{2}
Combine -2p and 2p to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}