Solve for n
n=1
n=3
Share
Copied to clipboard
-2n^{2}-6=-8n
Subtract 6 from both sides.
-2n^{2}-6+8n=0
Add 8n to both sides.
-n^{2}-3+4n=0
Divide both sides by 2.
-n^{2}+4n-3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=-\left(-3\right)=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -n^{2}+an+bn-3. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-n^{2}+3n\right)+\left(n-3\right)
Rewrite -n^{2}+4n-3 as \left(-n^{2}+3n\right)+\left(n-3\right).
-n\left(n-3\right)+n-3
Factor out -n in -n^{2}+3n.
\left(n-3\right)\left(-n+1\right)
Factor out common term n-3 by using distributive property.
n=3 n=1
To find equation solutions, solve n-3=0 and -n+1=0.
-2n^{2}-6=-8n
Subtract 6 from both sides.
-2n^{2}-6+8n=0
Add 8n to both sides.
-2n^{2}+8n-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 8 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-8±\sqrt{64-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
Square 8.
n=\frac{-8±\sqrt{64+8\left(-6\right)}}{2\left(-2\right)}
Multiply -4 times -2.
n=\frac{-8±\sqrt{64-48}}{2\left(-2\right)}
Multiply 8 times -6.
n=\frac{-8±\sqrt{16}}{2\left(-2\right)}
Add 64 to -48.
n=\frac{-8±4}{2\left(-2\right)}
Take the square root of 16.
n=\frac{-8±4}{-4}
Multiply 2 times -2.
n=-\frac{4}{-4}
Now solve the equation n=\frac{-8±4}{-4} when ± is plus. Add -8 to 4.
n=1
Divide -4 by -4.
n=-\frac{12}{-4}
Now solve the equation n=\frac{-8±4}{-4} when ± is minus. Subtract 4 from -8.
n=3
Divide -12 by -4.
n=1 n=3
The equation is now solved.
-2n^{2}+8n=6
Add 8n to both sides.
\frac{-2n^{2}+8n}{-2}=\frac{6}{-2}
Divide both sides by -2.
n^{2}+\frac{8}{-2}n=\frac{6}{-2}
Dividing by -2 undoes the multiplication by -2.
n^{2}-4n=\frac{6}{-2}
Divide 8 by -2.
n^{2}-4n=-3
Divide 6 by -2.
n^{2}-4n+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-4n+4=-3+4
Square -2.
n^{2}-4n+4=1
Add -3 to 4.
\left(n-2\right)^{2}=1
Factor n^{2}-4n+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
n-2=1 n-2=-1
Simplify.
n=3 n=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}