Solve for k
k=2
k=0
Share
Copied to clipboard
-2k-1+k^{2}=-1
Add k^{2} to both sides.
-2k-1+k^{2}+1=0
Add 1 to both sides.
-2k+k^{2}=0
Add -1 and 1 to get 0.
k\left(-2+k\right)=0
Factor out k.
k=0 k=2
To find equation solutions, solve k=0 and -2+k=0.
-2k-1+k^{2}=-1
Add k^{2} to both sides.
-2k-1+k^{2}+1=0
Add 1 to both sides.
-2k+k^{2}=0
Add -1 and 1 to get 0.
k^{2}-2k=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-2\right)±2}{2}
Take the square root of \left(-2\right)^{2}.
k=\frac{2±2}{2}
The opposite of -2 is 2.
k=\frac{4}{2}
Now solve the equation k=\frac{2±2}{2} when ± is plus. Add 2 to 2.
k=2
Divide 4 by 2.
k=\frac{0}{2}
Now solve the equation k=\frac{2±2}{2} when ± is minus. Subtract 2 from 2.
k=0
Divide 0 by 2.
k=2 k=0
The equation is now solved.
-2k-1+k^{2}=-1
Add k^{2} to both sides.
-2k-1+k^{2}+1=0
Add 1 to both sides.
-2k+k^{2}=0
Add -1 and 1 to get 0.
k^{2}-2k=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}-2k+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(k-1\right)^{2}=1
Factor k^{2}-2k+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
k-1=1 k-1=-1
Simplify.
k=2 k=0
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}