Factor
-2\left(k-\left(-\sqrt{22}-4\right)\right)\left(k-\left(\sqrt{22}-4\right)\right)
Evaluate
12-16k-2k^{2}
Share
Copied to clipboard
-2k^{2}-16k+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-2\right)\times 12}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-16\right)±\sqrt{256-4\left(-2\right)\times 12}}{2\left(-2\right)}
Square -16.
k=\frac{-\left(-16\right)±\sqrt{256+8\times 12}}{2\left(-2\right)}
Multiply -4 times -2.
k=\frac{-\left(-16\right)±\sqrt{256+96}}{2\left(-2\right)}
Multiply 8 times 12.
k=\frac{-\left(-16\right)±\sqrt{352}}{2\left(-2\right)}
Add 256 to 96.
k=\frac{-\left(-16\right)±4\sqrt{22}}{2\left(-2\right)}
Take the square root of 352.
k=\frac{16±4\sqrt{22}}{2\left(-2\right)}
The opposite of -16 is 16.
k=\frac{16±4\sqrt{22}}{-4}
Multiply 2 times -2.
k=\frac{4\sqrt{22}+16}{-4}
Now solve the equation k=\frac{16±4\sqrt{22}}{-4} when ± is plus. Add 16 to 4\sqrt{22}.
k=-\left(\sqrt{22}+4\right)
Divide 16+4\sqrt{22} by -4.
k=\frac{16-4\sqrt{22}}{-4}
Now solve the equation k=\frac{16±4\sqrt{22}}{-4} when ± is minus. Subtract 4\sqrt{22} from 16.
k=\sqrt{22}-4
Divide 16-4\sqrt{22} by -4.
-2k^{2}-16k+12=-2\left(k-\left(-\left(\sqrt{22}+4\right)\right)\right)\left(k-\left(\sqrt{22}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(4+\sqrt{22}\right) for x_{1} and -4+\sqrt{22} for x_{2}.
x ^ 2 +8x -6 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -8 rs = -6
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -4 - u s = -4 + u
Two numbers r and s sum up to -8 exactly when the average of the two numbers is \frac{1}{2}*-8 = -4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-4 - u) (-4 + u) = -6
To solve for unknown quantity u, substitute these in the product equation rs = -6
16 - u^2 = -6
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -6-16 = -22
Simplify the expression by subtracting 16 on both sides
u^2 = 22 u = \pm\sqrt{22} = \pm \sqrt{22}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-4 - \sqrt{22} = -8.690 s = -4 + \sqrt{22} = 0.690
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}