- 2 h = 10 \quad ( 2 + b
Solve for b
b=-\frac{h}{5}-2
Solve for h
h=-5b-10
Share
Copied to clipboard
-2h=20+10b
Use the distributive property to multiply 10 by 2+b.
20+10b=-2h
Swap sides so that all variable terms are on the left hand side.
10b=-2h-20
Subtract 20 from both sides.
\frac{10b}{10}=\frac{-2h-20}{10}
Divide both sides by 10.
b=\frac{-2h-20}{10}
Dividing by 10 undoes the multiplication by 10.
b=-\frac{h}{5}-2
Divide -2h-20 by 10.
-2h=20+10b
Use the distributive property to multiply 10 by 2+b.
-2h=10b+20
The equation is in standard form.
\frac{-2h}{-2}=\frac{10b+20}{-2}
Divide both sides by -2.
h=\frac{10b+20}{-2}
Dividing by -2 undoes the multiplication by -2.
h=-5b-10
Divide 20+10b by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}