Solve for θ
\theta =\frac{d\left(d+19\right)}{4}
Solve for d (complex solution)
d=\frac{-\sqrt{16\theta +361}-19}{2}
d=\frac{\sqrt{16\theta +361}-19}{2}
Solve for d
d=\frac{-\sqrt{16\theta +361}-19}{2}
d=\frac{\sqrt{16\theta +361}-19}{2}\text{, }\theta \geq -\frac{361}{16}
Graph
Share
Copied to clipboard
-38d+8\theta =2d^{2}
Add 2d^{2} to both sides. Anything plus zero gives itself.
8\theta =2d^{2}+38d
Add 38d to both sides.
\frac{8\theta }{8}=\frac{2d\left(d+19\right)}{8}
Divide both sides by 8.
\theta =\frac{2d\left(d+19\right)}{8}
Dividing by 8 undoes the multiplication by 8.
\theta =\frac{d\left(d+19\right)}{4}
Divide 2d\left(19+d\right) by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}