Solve for a
a\leq \frac{4}{3}
Share
Copied to clipboard
-2a-1+\frac{1}{2}a\geq -3
Add \frac{1}{2}a to both sides.
-\frac{3}{2}a-1\geq -3
Combine -2a and \frac{1}{2}a to get -\frac{3}{2}a.
-\frac{3}{2}a\geq -3+1
Add 1 to both sides.
-\frac{3}{2}a\geq -2
Add -3 and 1 to get -2.
a\leq -2\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}. Since -\frac{3}{2} is negative, the inequality direction is changed.
a\leq \frac{-2\left(-2\right)}{3}
Express -2\left(-\frac{2}{3}\right) as a single fraction.
a\leq \frac{4}{3}
Multiply -2 and -2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}