Factor
-2ab^{2}\left(2-a\right)^{2}
Evaluate
-2a\left(b\left(2-a\right)\right)^{2}
Share
Copied to clipboard
2\left(-a^{3}b^{2}+4a^{2}b^{2}-4ab^{2}\right)
Factor out 2.
ab^{2}\left(-a^{2}+4a-4\right)
Consider -a^{3}b^{2}+4a^{2}b^{2}-4ab^{2}. Factor out ab^{2}.
p+q=4 pq=-\left(-4\right)=4
Consider -a^{2}+4a-4. Factor the expression by grouping. First, the expression needs to be rewritten as -a^{2}+pa+qa-4. To find p and q, set up a system to be solved.
1,4 2,2
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
p=2 q=2
The solution is the pair that gives sum 4.
\left(-a^{2}+2a\right)+\left(2a-4\right)
Rewrite -a^{2}+4a-4 as \left(-a^{2}+2a\right)+\left(2a-4\right).
-a\left(a-2\right)+2\left(a-2\right)
Factor out -a in the first and 2 in the second group.
\left(a-2\right)\left(-a+2\right)
Factor out common term a-2 by using distributive property.
2ab^{2}\left(a-2\right)\left(-a+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}