Factor
2a\left(2-a\right)\left(a-4\right)
Evaluate
2a\left(2-a\right)\left(a-4\right)
Share
Copied to clipboard
2\left(-a^{3}+6a^{2}-8a\right)
Factor out 2.
a\left(-a^{2}+6a-8\right)
Consider -a^{3}+6a^{2}-8a. Factor out a.
p+q=6 pq=-\left(-8\right)=8
Consider -a^{2}+6a-8. Factor the expression by grouping. First, the expression needs to be rewritten as -a^{2}+pa+qa-8. To find p and q, set up a system to be solved.
1,8 2,4
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
p=4 q=2
The solution is the pair that gives sum 6.
\left(-a^{2}+4a\right)+\left(2a-8\right)
Rewrite -a^{2}+6a-8 as \left(-a^{2}+4a\right)+\left(2a-8\right).
-a\left(a-4\right)+2\left(a-4\right)
Factor out -a in the first and 2 in the second group.
\left(a-4\right)\left(-a+2\right)
Factor out common term a-4 by using distributive property.
2a\left(a-4\right)\left(-a+2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}