Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a\left(-2a-1\right)
Factor out a.
-2a^{2}-a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±1}{2\left(-2\right)}
Take the square root of 1.
a=\frac{1±1}{2\left(-2\right)}
The opposite of -1 is 1.
a=\frac{1±1}{-4}
Multiply 2 times -2.
a=\frac{2}{-4}
Now solve the equation a=\frac{1±1}{-4} when ± is plus. Add 1 to 1.
a=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
a=\frac{0}{-4}
Now solve the equation a=\frac{1±1}{-4} when ± is minus. Subtract 1 from 1.
a=0
Divide 0 by -4.
-2a^{2}-a=-2\left(a-\left(-\frac{1}{2}\right)\right)a
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2} for x_{1} and 0 for x_{2}.
-2a^{2}-a=-2\left(a+\frac{1}{2}\right)a
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-2a^{2}-a=-2\times \frac{-2a-1}{-2}a
Add \frac{1}{2} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-2a^{2}-a=\left(-2a-1\right)a
Cancel out 2, the greatest common factor in -2 and -2.