Solve for a
a=\frac{\sqrt{33}-9}{4}\approx -0.813859338
a=\frac{-\sqrt{33}-9}{4}\approx -3.686140662
Share
Copied to clipboard
-2a^{2}-8a-6-a=0
Subtract a from both sides.
-2a^{2}-9a-6=0
Combine -8a and -a to get -9a.
a=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -9 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-9\right)±\sqrt{81-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
Square -9.
a=\frac{-\left(-9\right)±\sqrt{81+8\left(-6\right)}}{2\left(-2\right)}
Multiply -4 times -2.
a=\frac{-\left(-9\right)±\sqrt{81-48}}{2\left(-2\right)}
Multiply 8 times -6.
a=\frac{-\left(-9\right)±\sqrt{33}}{2\left(-2\right)}
Add 81 to -48.
a=\frac{9±\sqrt{33}}{2\left(-2\right)}
The opposite of -9 is 9.
a=\frac{9±\sqrt{33}}{-4}
Multiply 2 times -2.
a=\frac{\sqrt{33}+9}{-4}
Now solve the equation a=\frac{9±\sqrt{33}}{-4} when ± is plus. Add 9 to \sqrt{33}.
a=\frac{-\sqrt{33}-9}{4}
Divide 9+\sqrt{33} by -4.
a=\frac{9-\sqrt{33}}{-4}
Now solve the equation a=\frac{9±\sqrt{33}}{-4} when ± is minus. Subtract \sqrt{33} from 9.
a=\frac{\sqrt{33}-9}{4}
Divide 9-\sqrt{33} by -4.
a=\frac{-\sqrt{33}-9}{4} a=\frac{\sqrt{33}-9}{4}
The equation is now solved.
-2a^{2}-8a-6-a=0
Subtract a from both sides.
-2a^{2}-9a-6=0
Combine -8a and -a to get -9a.
-2a^{2}-9a=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{-2a^{2}-9a}{-2}=\frac{6}{-2}
Divide both sides by -2.
a^{2}+\left(-\frac{9}{-2}\right)a=\frac{6}{-2}
Dividing by -2 undoes the multiplication by -2.
a^{2}+\frac{9}{2}a=\frac{6}{-2}
Divide -9 by -2.
a^{2}+\frac{9}{2}a=-3
Divide 6 by -2.
a^{2}+\frac{9}{2}a+\left(\frac{9}{4}\right)^{2}=-3+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{9}{2}a+\frac{81}{16}=-3+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{9}{2}a+\frac{81}{16}=\frac{33}{16}
Add -3 to \frac{81}{16}.
\left(a+\frac{9}{4}\right)^{2}=\frac{33}{16}
Factor a^{2}+\frac{9}{2}a+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{9}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
a+\frac{9}{4}=\frac{\sqrt{33}}{4} a+\frac{9}{4}=-\frac{\sqrt{33}}{4}
Simplify.
a=\frac{\sqrt{33}-9}{4} a=\frac{-\sqrt{33}-9}{4}
Subtract \frac{9}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}