Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-2a^{2}-11a-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\left(-10\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -11 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-11\right)±\sqrt{121-4\left(-2\right)\left(-10\right)}}{2\left(-2\right)}
Square -11.
a=\frac{-\left(-11\right)±\sqrt{121+8\left(-10\right)}}{2\left(-2\right)}
Multiply -4 times -2.
a=\frac{-\left(-11\right)±\sqrt{121-80}}{2\left(-2\right)}
Multiply 8 times -10.
a=\frac{-\left(-11\right)±\sqrt{41}}{2\left(-2\right)}
Add 121 to -80.
a=\frac{11±\sqrt{41}}{2\left(-2\right)}
The opposite of -11 is 11.
a=\frac{11±\sqrt{41}}{-4}
Multiply 2 times -2.
a=\frac{\sqrt{41}+11}{-4}
Now solve the equation a=\frac{11±\sqrt{41}}{-4} when ± is plus. Add 11 to \sqrt{41}.
a=\frac{-\sqrt{41}-11}{4}
Divide 11+\sqrt{41} by -4.
a=\frac{11-\sqrt{41}}{-4}
Now solve the equation a=\frac{11±\sqrt{41}}{-4} when ± is minus. Subtract \sqrt{41} from 11.
a=\frac{\sqrt{41}-11}{4}
Divide 11-\sqrt{41} by -4.
a=\frac{-\sqrt{41}-11}{4} a=\frac{\sqrt{41}-11}{4}
The equation is now solved.
-2a^{2}-11a-10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2a^{2}-11a-10-\left(-10\right)=-\left(-10\right)
Add 10 to both sides of the equation.
-2a^{2}-11a=-\left(-10\right)
Subtracting -10 from itself leaves 0.
-2a^{2}-11a=10
Subtract -10 from 0.
\frac{-2a^{2}-11a}{-2}=\frac{10}{-2}
Divide both sides by -2.
a^{2}+\left(-\frac{11}{-2}\right)a=\frac{10}{-2}
Dividing by -2 undoes the multiplication by -2.
a^{2}+\frac{11}{2}a=\frac{10}{-2}
Divide -11 by -2.
a^{2}+\frac{11}{2}a=-5
Divide 10 by -2.
a^{2}+\frac{11}{2}a+\left(\frac{11}{4}\right)^{2}=-5+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{11}{2}a+\frac{121}{16}=-5+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{11}{2}a+\frac{121}{16}=\frac{41}{16}
Add -5 to \frac{121}{16}.
\left(a+\frac{11}{4}\right)^{2}=\frac{41}{16}
Factor a^{2}+\frac{11}{2}a+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{11}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
a+\frac{11}{4}=\frac{\sqrt{41}}{4} a+\frac{11}{4}=-\frac{\sqrt{41}}{4}
Simplify.
a=\frac{\sqrt{41}-11}{4} a=\frac{-\sqrt{41}-11}{4}
Subtract \frac{11}{4} from both sides of the equation.
x ^ 2 +\frac{11}{2}x +5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{11}{2} rs = 5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{4} - u s = -\frac{11}{4} + u
Two numbers r and s sum up to -\frac{11}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{11}{2} = -\frac{11}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{4} - u) (-\frac{11}{4} + u) = 5
To solve for unknown quantity u, substitute these in the product equation rs = 5
\frac{121}{16} - u^2 = 5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 5-\frac{121}{16} = -\frac{41}{16}
Simplify the expression by subtracting \frac{121}{16} on both sides
u^2 = \frac{41}{16} u = \pm\sqrt{\frac{41}{16}} = \pm \frac{\sqrt{41}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{4} - \frac{\sqrt{41}}{4} = -4.351 s = -\frac{11}{4} + \frac{\sqrt{41}}{4} = -1.149
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.