Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(-2a^{2}\right)^{1}\times \frac{1}{-a^{2}}
Use the rules of exponents to simplify the expression.
\left(-2\right)^{1}\left(a^{2}\right)^{1}\left(-1\right)\times \frac{1}{a^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-2\right)^{1}\left(-1\right)\left(a^{2}\right)^{1}\times \frac{1}{a^{2}}
Use the Commutative Property of Multiplication.
\left(-2\right)^{1}\left(-1\right)a^{2}a^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-2\right)^{1}\left(-1\right)a^{2}a^{-2}
Multiply 2 times -1.
\left(-2\right)^{1}\left(-1\right)a^{2-2}
To multiply powers of the same base, add their exponents.
\left(-2\right)^{1}\left(-1\right)a^{0}
Add the exponents 2 and -2.
-2\left(-1\right)a^{0}
Raise -2 to the power 1.
2a^{0}
Multiply -2 times -1.
2\times 1
For any term t except 0, t^{0}=1.
2
For any term t, t\times 1=t and 1t=t.
\frac{\left(-2\right)^{1}a^{2}}{-a^{2}}
Use the rules of exponents to simplify the expression.
\frac{\left(-2\right)^{1}a^{2-2}}{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-2\right)^{1}a^{0}}{-1}
Subtract 2 from 2.
\frac{\left(-2\right)^{1}}{-1}
For any number a except 0, a^{0}=1.
2
Divide -2 by -1.