Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{10-b}{x+2}\text{, }&x\neq -2\\a\in \mathrm{C}\text{, }&b=10\text{ and }x=-2\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{10-b}{x+2}\text{, }&x\neq -2\\a\in \mathrm{R}\text{, }&b=10\text{ and }x=-2\end{matrix}\right.
Solve for b
b=10-2a-ax
Graph
Share
Copied to clipboard
-2a+10-ax=b
Subtract ax from both sides.
-2a-ax=b-10
Subtract 10 from both sides.
\left(-2-x\right)a=b-10
Combine all terms containing a.
\left(-x-2\right)a=b-10
The equation is in standard form.
\frac{\left(-x-2\right)a}{-x-2}=\frac{b-10}{-x-2}
Divide both sides by -x-2.
a=\frac{b-10}{-x-2}
Dividing by -x-2 undoes the multiplication by -x-2.
a=-\frac{b-10}{x+2}
Divide b-10 by -x-2.
-2a+10-ax=b
Subtract ax from both sides.
-2a-ax=b-10
Subtract 10 from both sides.
\left(-2-x\right)a=b-10
Combine all terms containing a.
\left(-x-2\right)a=b-10
The equation is in standard form.
\frac{\left(-x-2\right)a}{-x-2}=\frac{b-10}{-x-2}
Divide both sides by -x-2.
a=\frac{b-10}{-x-2}
Dividing by -x-2 undoes the multiplication by -x-2.
a=-\frac{b-10}{x+2}
Divide b-10 by -x-2.
ax+b=-2a+10
Swap sides so that all variable terms are on the left hand side.
b=-2a+10-ax
Subtract ax from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}