Evaluate
-\frac{2\left(k+1\right)}{1-6k}
Factor
-\frac{2\left(k+1\right)}{1-6k}
Share
Copied to clipboard
-2-\frac{7k\times 2}{1-6k}
Express \frac{7k}{1-6k}\times 2 as a single fraction.
-2-\frac{14k}{1-6k}
Multiply 7 and 2 to get 14.
-\frac{2\left(1-6k\right)}{1-6k}-\frac{14k}{1-6k}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2 times \frac{1-6k}{1-6k}.
\frac{-2\left(1-6k\right)-14k}{1-6k}
Since -\frac{2\left(1-6k\right)}{1-6k} and \frac{14k}{1-6k} have the same denominator, subtract them by subtracting their numerators.
\frac{-2+12k-14k}{1-6k}
Do the multiplications in -2\left(1-6k\right)-14k.
\frac{-2-2k}{1-6k}
Combine like terms in -2+12k-14k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}