Solve for x (complex solution)
x=-5-5i
x=-5+5i
Graph
Share
Copied to clipboard
-2\left(x^{2}+10x+25\right)-1=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
-2x^{2}-20x-50-1=49
Use the distributive property to multiply -2 by x^{2}+10x+25.
-2x^{2}-20x-51=49
Subtract 1 from -50 to get -51.
-2x^{2}-20x-51-49=0
Subtract 49 from both sides.
-2x^{2}-20x-100=0
Subtract 49 from -51 to get -100.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-2\right)\left(-100\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -20 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-2\right)\left(-100\right)}}{2\left(-2\right)}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400+8\left(-100\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-20\right)±\sqrt{400-800}}{2\left(-2\right)}
Multiply 8 times -100.
x=\frac{-\left(-20\right)±\sqrt{-400}}{2\left(-2\right)}
Add 400 to -800.
x=\frac{-\left(-20\right)±20i}{2\left(-2\right)}
Take the square root of -400.
x=\frac{20±20i}{2\left(-2\right)}
The opposite of -20 is 20.
x=\frac{20±20i}{-4}
Multiply 2 times -2.
x=\frac{20+20i}{-4}
Now solve the equation x=\frac{20±20i}{-4} when ± is plus. Add 20 to 20i.
x=-5-5i
Divide 20+20i by -4.
x=\frac{20-20i}{-4}
Now solve the equation x=\frac{20±20i}{-4} when ± is minus. Subtract 20i from 20.
x=-5+5i
Divide 20-20i by -4.
x=-5-5i x=-5+5i
The equation is now solved.
-2\left(x^{2}+10x+25\right)-1=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
-2x^{2}-20x-50-1=49
Use the distributive property to multiply -2 by x^{2}+10x+25.
-2x^{2}-20x-51=49
Subtract 1 from -50 to get -51.
-2x^{2}-20x=49+51
Add 51 to both sides.
-2x^{2}-20x=100
Add 49 and 51 to get 100.
\frac{-2x^{2}-20x}{-2}=\frac{100}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{20}{-2}\right)x=\frac{100}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+10x=\frac{100}{-2}
Divide -20 by -2.
x^{2}+10x=-50
Divide 100 by -2.
x^{2}+10x+5^{2}=-50+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-50+25
Square 5.
x^{2}+10x+25=-25
Add -50 to 25.
\left(x+5\right)^{2}=-25
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{-25}
Take the square root of both sides of the equation.
x+5=5i x+5=-5i
Simplify.
x=-5+5i x=-5-5i
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}