Solve for a
a=2+\frac{10}{x}
x\neq 0
Solve for x
x=\frac{10}{a-2}
a\neq 2
Graph
Share
Copied to clipboard
-2x-4=6-ax
Use the distributive property to multiply -2 by x+2.
6-ax=-2x-4
Swap sides so that all variable terms are on the left hand side.
-ax=-2x-4-6
Subtract 6 from both sides.
-ax=-2x-10
Subtract 6 from -4 to get -10.
\left(-x\right)a=-2x-10
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-2x-10}{-x}
Divide both sides by -x.
a=\frac{-2x-10}{-x}
Dividing by -x undoes the multiplication by -x.
a=2+\frac{10}{x}
Divide -2x-10 by -x.
-2x-4=6-ax
Use the distributive property to multiply -2 by x+2.
-2x-4+ax=6
Add ax to both sides.
-2x+ax=6+4
Add 4 to both sides.
-2x+ax=10
Add 6 and 4 to get 10.
\left(-2+a\right)x=10
Combine all terms containing x.
\left(a-2\right)x=10
The equation is in standard form.
\frac{\left(a-2\right)x}{a-2}=\frac{10}{a-2}
Divide both sides by -2+a.
x=\frac{10}{a-2}
Dividing by -2+a undoes the multiplication by -2+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}