Solve for x (complex solution)
x=-\frac{4}{3}-\frac{5}{3}i\approx -1.333333333-1.666666667i
x=-\frac{4}{3}+\frac{5}{3}i\approx -1.333333333+1.666666667i
Graph
Share
Copied to clipboard
-2\left(3x+4\right)^{2}=45+5
Subtracting 5 from itself leaves 0.
-2\left(3x+4\right)^{2}=50
Add 45 to 5.
\frac{-2\left(3x+4\right)^{2}}{-2}=\frac{50}{-2}
Divide both sides by -2.
\left(3x+4\right)^{2}=\frac{50}{-2}
Dividing by -2 undoes the multiplication by -2.
\left(3x+4\right)^{2}=-25
Divide 50 by -2.
3x+4=5i 3x+4=-5i
Take the square root of both sides of the equation.
3x+4-4=5i-4 3x+4-4=-5i-4
Subtract 4 from both sides of the equation.
3x=5i-4 3x=-5i-4
Subtracting 4 from itself leaves 0.
3x=-4+5i
Subtract 4 from 5i.
3x=-4-5i
Subtract 4 from -5i.
\frac{3x}{3}=\frac{-4+5i}{3} \frac{3x}{3}=\frac{-4-5i}{3}
Divide both sides by 3.
x=\frac{-4+5i}{3} x=\frac{-4-5i}{3}
Dividing by 3 undoes the multiplication by 3.
x=-\frac{4}{3}+\frac{5}{3}i
Divide -4+5i by 3.
x=-\frac{4}{3}-\frac{5}{3}i
Divide -4-5i by 3.
x=-\frac{4}{3}+\frac{5}{3}i x=-\frac{4}{3}-\frac{5}{3}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}