Solve for u
u=\frac{7-2w}{3}
Solve for w
w=\frac{7-3u}{2}
Share
Copied to clipboard
-4w+8+3u=9+3\left(3u-5\right)
Use the distributive property to multiply -2 by 2w-4.
-4w+8+3u=9+9u-15
Use the distributive property to multiply 3 by 3u-5.
-4w+8+3u=-6+9u
Subtract 15 from 9 to get -6.
-4w+8+3u-9u=-6
Subtract 9u from both sides.
-4w+8-6u=-6
Combine 3u and -9u to get -6u.
8-6u=-6+4w
Add 4w to both sides.
-6u=-6+4w-8
Subtract 8 from both sides.
-6u=-14+4w
Subtract 8 from -6 to get -14.
-6u=4w-14
The equation is in standard form.
\frac{-6u}{-6}=\frac{4w-14}{-6}
Divide both sides by -6.
u=\frac{4w-14}{-6}
Dividing by -6 undoes the multiplication by -6.
u=\frac{7-2w}{3}
Divide -14+4w by -6.
-4w+8+3u=9+3\left(3u-5\right)
Use the distributive property to multiply -2 by 2w-4.
-4w+8+3u=9+9u-15
Use the distributive property to multiply 3 by 3u-5.
-4w+8+3u=-6+9u
Subtract 15 from 9 to get -6.
-4w+3u=-6+9u-8
Subtract 8 from both sides.
-4w+3u=-14+9u
Subtract 8 from -6 to get -14.
-4w=-14+9u-3u
Subtract 3u from both sides.
-4w=-14+6u
Combine 9u and -3u to get 6u.
-4w=6u-14
The equation is in standard form.
\frac{-4w}{-4}=\frac{6u-14}{-4}
Divide both sides by -4.
w=\frac{6u-14}{-4}
Dividing by -4 undoes the multiplication by -4.
w=\frac{7-3u}{2}
Divide -14+6u by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}