Solve for r
r = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
Share
Copied to clipboard
\frac{2}{3}=\frac{2\left(-\frac{1}{3}\right)+1}{r+2\left(-\frac{1}{3}\right)}
Multiply -2 and -\frac{1}{3} to get \frac{2}{3}.
\frac{2}{3}=\frac{-\frac{2}{3}+1}{r+2\left(-\frac{1}{3}\right)}
Multiply 2 and -\frac{1}{3} to get -\frac{2}{3}.
\frac{2}{3}=\frac{\frac{1}{3}}{r+2\left(-\frac{1}{3}\right)}
Add -\frac{2}{3} and 1 to get \frac{1}{3}.
\frac{2}{3}=\frac{\frac{1}{3}}{r-\frac{2}{3}}
Multiply 2 and -\frac{1}{3} to get -\frac{2}{3}.
\frac{2}{3}=\frac{1}{3\left(r-\frac{2}{3}\right)}
Express \frac{\frac{1}{3}}{r-\frac{2}{3}} as a single fraction.
\frac{2}{3}=\frac{1}{3r-2}
Use the distributive property to multiply 3 by r-\frac{2}{3}.
\frac{1}{3r-2}=\frac{2}{3}
Swap sides so that all variable terms are on the left hand side.
3=2\left(3r-2\right)
Variable r cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3r-2\right), the least common multiple of 3r-2,3.
\frac{3}{2}=3r-2
Divide both sides by 2.
3r-2=\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
3r=\frac{3}{2}+2
Add 2 to both sides.
3r=\frac{7}{2}
Add \frac{3}{2} and 2 to get \frac{7}{2}.
r=\frac{\frac{7}{2}}{3}
Divide both sides by 3.
r=\frac{7}{2\times 3}
Express \frac{\frac{7}{2}}{3} as a single fraction.
r=\frac{7}{6}
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}