Evaluate
\frac{13ab}{3}-\frac{5b^{2}}{2}-\frac{a^{2}}{2}
Expand
\frac{13ab}{3}-\frac{5b^{2}}{2}-\frac{a^{2}}{2}
Share
Copied to clipboard
-\frac{3}{2}a^{2}-4ab-\left(-\frac{20}{3}a^{2}+\left(2a-\frac{1}{4}ab-\frac{1}{2}b\right)\left(3a-2b\right)-\left(\frac{1}{9}a+b\right)\left(3a-\frac{3}{2}b\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Use the distributive property to multiply -2 by \frac{3}{4}a^{2}+2ab.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{20}{3}a^{2}+6a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\left(\frac{1}{9}a+b\right)\left(3a-\frac{3}{2}b\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Use the distributive property to multiply 2a-\frac{1}{4}ab-\frac{1}{2}b by 3a-2b and combine like terms.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{2}{3}a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\left(\frac{1}{9}a+b\right)\left(3a-\frac{3}{2}b\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{20}{3}a^{2} and 6a^{2} to get -\frac{2}{3}a^{2}.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{2}{3}a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\left(\frac{1}{3}a^{2}+\frac{17}{6}ab-\frac{3}{2}b^{2}\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Use the distributive property to multiply \frac{1}{9}a+b by 3a-\frac{3}{2}b and combine like terms.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{2}{3}a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\frac{1}{3}a^{2}-\frac{17}{6}ab+\frac{3}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
To find the opposite of \frac{1}{3}a^{2}+\frac{17}{6}ab-\frac{3}{2}b^{2}, find the opposite of each term.
-\frac{3}{2}a^{2}-4ab-\left(-a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\frac{17}{6}ab+\frac{3}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{2}{3}a^{2} and -\frac{1}{3}a^{2} to get -a^{2}.
-\frac{3}{2}a^{2}-4ab-\left(-a^{2}-\frac{25}{3}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}+\frac{3}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{11}{2}ab and -\frac{17}{6}ab to get -\frac{25}{3}ab.
-\frac{3}{2}a^{2}-4ab-\left(-a^{2}-\frac{25}{3}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+\frac{5}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine b^{2} and \frac{3}{2}b^{2} to get \frac{5}{2}b^{2}.
-\frac{3}{2}a^{2}-4ab+a^{2}+\frac{25}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
To find the opposite of -a^{2}-\frac{25}{3}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+\frac{5}{2}b^{2}, find the opposite of each term.
-\frac{1}{2}a^{2}-4ab+\frac{25}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{3}{2}a^{2} and a^{2} to get -\frac{1}{2}a^{2}.
-\frac{1}{2}a^{2}+\frac{13}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -4ab and \frac{25}{3}ab to get \frac{13}{3}ab.
-\frac{1}{2}a^{2}+\frac{13}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}
Use the distributive property to multiply -\frac{3}{2}ab by \frac{1}{2}a-\frac{1}{3}b.
-\frac{1}{2}a^{2}+\frac{13}{3}ab-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}+\frac{1}{2}ab^{2}
Combine \frac{3}{4}a^{2}b and -\frac{3}{4}a^{2}b to get 0.
-\frac{1}{2}a^{2}+\frac{13}{3}ab-\frac{5}{2}b^{2}
Combine -\frac{1}{2}ab^{2} and \frac{1}{2}ab^{2} to get 0.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{20}{3}a^{2}+\left(2a-\frac{1}{4}ab-\frac{1}{2}b\right)\left(3a-2b\right)-\left(\frac{1}{9}a+b\right)\left(3a-\frac{3}{2}b\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Use the distributive property to multiply -2 by \frac{3}{4}a^{2}+2ab.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{20}{3}a^{2}+6a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\left(\frac{1}{9}a+b\right)\left(3a-\frac{3}{2}b\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Use the distributive property to multiply 2a-\frac{1}{4}ab-\frac{1}{2}b by 3a-2b and combine like terms.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{2}{3}a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\left(\frac{1}{9}a+b\right)\left(3a-\frac{3}{2}b\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{20}{3}a^{2} and 6a^{2} to get -\frac{2}{3}a^{2}.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{2}{3}a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\left(\frac{1}{3}a^{2}+\frac{17}{6}ab-\frac{3}{2}b^{2}\right)\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Use the distributive property to multiply \frac{1}{9}a+b by 3a-\frac{3}{2}b and combine like terms.
-\frac{3}{2}a^{2}-4ab-\left(-\frac{2}{3}a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\frac{1}{3}a^{2}-\frac{17}{6}ab+\frac{3}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
To find the opposite of \frac{1}{3}a^{2}+\frac{17}{6}ab-\frac{3}{2}b^{2}, find the opposite of each term.
-\frac{3}{2}a^{2}-4ab-\left(-a^{2}-\frac{11}{2}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}-\frac{17}{6}ab+\frac{3}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{2}{3}a^{2} and -\frac{1}{3}a^{2} to get -a^{2}.
-\frac{3}{2}a^{2}-4ab-\left(-a^{2}-\frac{25}{3}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+b^{2}+\frac{3}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{11}{2}ab and -\frac{17}{6}ab to get -\frac{25}{3}ab.
-\frac{3}{2}a^{2}-4ab-\left(-a^{2}-\frac{25}{3}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+\frac{5}{2}b^{2}\right)-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine b^{2} and \frac{3}{2}b^{2} to get \frac{5}{2}b^{2}.
-\frac{3}{2}a^{2}-4ab+a^{2}+\frac{25}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
To find the opposite of -a^{2}-\frac{25}{3}ab-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}+\frac{5}{2}b^{2}, find the opposite of each term.
-\frac{1}{2}a^{2}-4ab+\frac{25}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -\frac{3}{2}a^{2} and a^{2} to get -\frac{1}{2}a^{2}.
-\frac{1}{2}a^{2}+\frac{13}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{2}ab\left(\frac{1}{2}a-\frac{1}{3}b\right)
Combine -4ab and \frac{25}{3}ab to get \frac{13}{3}ab.
-\frac{1}{2}a^{2}+\frac{13}{3}ab+\frac{3}{4}a^{2}b-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}-\frac{3}{4}a^{2}b+\frac{1}{2}ab^{2}
Use the distributive property to multiply -\frac{3}{2}ab by \frac{1}{2}a-\frac{1}{3}b.
-\frac{1}{2}a^{2}+\frac{13}{3}ab-\frac{1}{2}ab^{2}-\frac{5}{2}b^{2}+\frac{1}{2}ab^{2}
Combine \frac{3}{4}a^{2}b and -\frac{3}{4}a^{2}b to get 0.
-\frac{1}{2}a^{2}+\frac{13}{3}ab-\frac{5}{2}b^{2}
Combine -\frac{1}{2}ab^{2} and \frac{1}{2}ab^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}