Evaluate
-\frac{10x}{3}
Differentiate w.r.t. x
-\frac{10}{3} = -3\frac{1}{3} = -3.3333333333333335
Graph
Share
Copied to clipboard
\frac{-2}{3}x\times 5
Multiply -2 and \frac{1}{3} to get \frac{-2}{3}.
-\frac{2}{3}x\times 5
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{-2\times 5}{3}x
Express -\frac{2}{3}\times 5 as a single fraction.
\frac{-10}{3}x
Multiply -2 and 5 to get -10.
-\frac{10}{3}x
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2}{3}x\times 5)
Multiply -2 and \frac{1}{3} to get \frac{-2}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2}{3}x\times 5)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2\times 5}{3}x)
Express -\frac{2}{3}\times 5 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-10}{3}x)
Multiply -2 and 5 to get -10.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{10}{3}x)
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
-\frac{10}{3}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{10}{3}x^{0}
Subtract 1 from 1.
-\frac{10}{3}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}