Solve for b
b=\frac{5t}{6}+4
Solve for t
t=\frac{6\left(b-4\right)}{5}
Share
Copied to clipboard
-2\times 5t+12b=48
Multiply both sides of the equation by 12.
-10t+12b=48
Multiply -2 and 5 to get -10.
12b=48+10t
Add 10t to both sides.
12b=10t+48
The equation is in standard form.
\frac{12b}{12}=\frac{10t+48}{12}
Divide both sides by 12.
b=\frac{10t+48}{12}
Dividing by 12 undoes the multiplication by 12.
b=\frac{5t}{6}+4
Divide 48+10t by 12.
-2\times 5t+12b=48
Multiply both sides of the equation by 12.
-10t+12b=48
Multiply -2 and 5 to get -10.
-10t=48-12b
Subtract 12b from both sides.
\frac{-10t}{-10}=\frac{48-12b}{-10}
Divide both sides by -10.
t=\frac{48-12b}{-10}
Dividing by -10 undoes the multiplication by -10.
t=\frac{6b-24}{5}
Divide 48-12b by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}