Verify
false
Share
Copied to clipboard
\frac{-\frac{10+1}{5}}{\frac{1}{5}}=-\frac{11}{5}\times 5^{2}-11
Multiply 2 and 5 to get 10.
\frac{-\frac{11}{5}}{\frac{1}{5}}=-\frac{11}{5}\times 5^{2}-11
Add 10 and 1 to get 11.
-\frac{11}{5}\times 5=-\frac{11}{5}\times 5^{2}-11
Divide -\frac{11}{5} by \frac{1}{5} by multiplying -\frac{11}{5} by the reciprocal of \frac{1}{5}.
-11=-\frac{11}{5}\times 5^{2}-11
Cancel out 5 and 5.
-11=-\frac{11}{5}\times 25-11
Calculate 5 to the power of 2 and get 25.
-11=\frac{-11\times 25}{5}-11
Express -\frac{11}{5}\times 25 as a single fraction.
-11=\frac{-275}{5}-11
Multiply -11 and 25 to get -275.
-11=-55-11
Divide -275 by 5 to get -55.
-11=-66
Subtract 11 from -55 to get -66.
\text{false}
Compare -11 and -66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}