Evaluate
-\frac{10}{3}\approx -3.333333333
Factor
-\frac{10}{3} = -3\frac{1}{3} = -3.3333333333333335
Share
Copied to clipboard
\frac{\left(-\frac{2\times 4+1}{4}\right)\times 25}{\frac{15}{32}\times 36}
Divide \frac{-\frac{2\times 4+1}{4}}{\frac{15}{32}} by \frac{36}{25} by multiplying \frac{-\frac{2\times 4+1}{4}}{\frac{15}{32}} by the reciprocal of \frac{36}{25}.
\frac{\left(-\frac{8+1}{4}\right)\times 25}{\frac{15}{32}\times 36}
Multiply 2 and 4 to get 8.
\frac{-\frac{9}{4}\times 25}{\frac{15}{32}\times 36}
Add 8 and 1 to get 9.
\frac{\frac{-9\times 25}{4}}{\frac{15}{32}\times 36}
Express -\frac{9}{4}\times 25 as a single fraction.
\frac{\frac{-225}{4}}{\frac{15}{32}\times 36}
Multiply -9 and 25 to get -225.
\frac{-\frac{225}{4}}{\frac{15}{32}\times 36}
Fraction \frac{-225}{4} can be rewritten as -\frac{225}{4} by extracting the negative sign.
\frac{-\frac{225}{4}}{\frac{15\times 36}{32}}
Express \frac{15}{32}\times 36 as a single fraction.
\frac{-\frac{225}{4}}{\frac{540}{32}}
Multiply 15 and 36 to get 540.
\frac{-\frac{225}{4}}{\frac{135}{8}}
Reduce the fraction \frac{540}{32} to lowest terms by extracting and canceling out 4.
-\frac{225}{4}\times \frac{8}{135}
Divide -\frac{225}{4} by \frac{135}{8} by multiplying -\frac{225}{4} by the reciprocal of \frac{135}{8}.
\frac{-225\times 8}{4\times 135}
Multiply -\frac{225}{4} times \frac{8}{135} by multiplying numerator times numerator and denominator times denominator.
\frac{-1800}{540}
Do the multiplications in the fraction \frac{-225\times 8}{4\times 135}.
-\frac{10}{3}
Reduce the fraction \frac{-1800}{540} to lowest terms by extracting and canceling out 180.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}