Solve for x
x=-\frac{y^{2}}{6}-\frac{z^{2}}{6}+\frac{2y}{3}-\frac{5}{6}
Solve for y
y=\sqrt{-6x-z^{2}-1}+2
y=-\sqrt{-6x-z^{2}-1}+2\text{, }x\leq \frac{-z^{2}-1}{6}
Share
Copied to clipboard
6x+3^{2}+y^{2}-2y\times 2+z^{2}=4
Multiply -2 and -3 to get 6.
6x+9+y^{2}-2y\times 2+z^{2}=4
Calculate 3 to the power of 2 and get 9.
6x+9+y^{2}-4y+z^{2}=4
Multiply 2 and 2 to get 4.
6x+y^{2}-4y+z^{2}=4-9
Subtract 9 from both sides.
6x+y^{2}-4y+z^{2}=-5
Subtract 9 from 4 to get -5.
6x-4y+z^{2}=-5-y^{2}
Subtract y^{2} from both sides.
6x+z^{2}=-5-y^{2}+4y
Add 4y to both sides.
6x=-5-y^{2}+4y-z^{2}
Subtract z^{2} from both sides.
6x=-y^{2}+4y-z^{2}-5
The equation is in standard form.
\frac{6x}{6}=\frac{-y^{2}+4y-z^{2}-5}{6}
Divide both sides by 6.
x=\frac{-y^{2}+4y-z^{2}-5}{6}
Dividing by 6 undoes the multiplication by 6.
x=-\frac{y^{2}}{6}-\frac{z^{2}}{6}+\frac{2y}{3}-\frac{5}{6}
Divide -5-y^{2}+4y-z^{2} by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}