Evaluate
-\frac{217}{4}=-54.25
Factor
-\frac{217}{4} = -54\frac{1}{4} = -54.25
Share
Copied to clipboard
-4-\frac{\frac{15}{4}}{-5}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Calculate 2 to the power of 2 and get 4.
-4-\frac{15}{4\left(-5\right)}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Express \frac{\frac{15}{4}}{-5} as a single fraction.
-4-\frac{15}{-20}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Multiply 4 and -5 to get -20.
-4-\left(-\frac{3}{4}\right)+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Reduce the fraction \frac{15}{-20} to lowest terms by extracting and canceling out 5.
-4+\frac{3}{4}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
The opposite of -\frac{3}{4} is \frac{3}{4}.
-\frac{16}{4}+\frac{3}{4}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Convert -4 to fraction -\frac{16}{4}.
\frac{-16+3}{4}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Since -\frac{16}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-\frac{13}{4}+|-\frac{1}{4}|+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Add -16 and 3 to get -13.
-\frac{13}{4}+\frac{1}{4}+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{4} is \frac{1}{4}.
\frac{-13+1}{4}+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Since -\frac{13}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{-12}{4}+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Add -13 and 1 to get -12.
-3+\frac{1}{8}\left(-2\right)+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Divide -12 by 4 to get -3.
-3+\frac{-2}{8}+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Multiply \frac{1}{8} and -2 to get \frac{-2}{8}.
-3-\frac{1}{4}+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
-\frac{12}{4}-\frac{1}{4}+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Convert -3 to fraction -\frac{12}{4}.
\frac{-12-1}{4}+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Since -\frac{12}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{4}+\left(\frac{2}{3}-\frac{2\times 4+3}{4}\right)\times 24-\left(-1\right)^{2018}
Subtract 1 from -12 to get -13.
-\frac{13}{4}+\left(\frac{2}{3}-\frac{8+3}{4}\right)\times 24-\left(-1\right)^{2018}
Multiply 2 and 4 to get 8.
-\frac{13}{4}+\left(\frac{2}{3}-\frac{11}{4}\right)\times 24-\left(-1\right)^{2018}
Add 8 and 3 to get 11.
-\frac{13}{4}+\left(\frac{8}{12}-\frac{33}{12}\right)\times 24-\left(-1\right)^{2018}
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{11}{4} to fractions with denominator 12.
-\frac{13}{4}+\frac{8-33}{12}\times 24-\left(-1\right)^{2018}
Since \frac{8}{12} and \frac{33}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{4}-\frac{25}{12}\times 24-\left(-1\right)^{2018}
Subtract 33 from 8 to get -25.
-\frac{13}{4}+\frac{-25\times 24}{12}-\left(-1\right)^{2018}
Express -\frac{25}{12}\times 24 as a single fraction.
-\frac{13}{4}+\frac{-600}{12}-\left(-1\right)^{2018}
Multiply -25 and 24 to get -600.
-\frac{13}{4}-50-\left(-1\right)^{2018}
Divide -600 by 12 to get -50.
-\frac{13}{4}-\frac{200}{4}-\left(-1\right)^{2018}
Convert 50 to fraction \frac{200}{4}.
\frac{-13-200}{4}-\left(-1\right)^{2018}
Since -\frac{13}{4} and \frac{200}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{213}{4}-\left(-1\right)^{2018}
Subtract 200 from -13 to get -213.
-\frac{213}{4}-1
Calculate -1 to the power of 2018 and get 1.
-\frac{213}{4}-\frac{4}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{-213-4}{4}
Since -\frac{213}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{217}{4}
Subtract 4 from -213 to get -217.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}