Evaluate
-\frac{17}{4}=-4.25
Factor
-\frac{17}{4} = -4\frac{1}{4} = -4.25
Share
Copied to clipboard
-4+\frac{8}{\left(-2\right)^{3}}-2\left(\frac{1}{8}-\frac{1}{2}\right)
Calculate 2 to the power of 2 and get 4.
-4+\frac{8}{-8}-2\left(\frac{1}{8}-\frac{1}{2}\right)
Calculate -2 to the power of 3 and get -8.
-4-1-2\left(\frac{1}{8}-\frac{1}{2}\right)
Divide 8 by -8 to get -1.
-5-2\left(\frac{1}{8}-\frac{1}{2}\right)
Subtract 1 from -4 to get -5.
-5-2\left(\frac{1}{8}-\frac{4}{8}\right)
Least common multiple of 8 and 2 is 8. Convert \frac{1}{8} and \frac{1}{2} to fractions with denominator 8.
-5-2\times \frac{1-4}{8}
Since \frac{1}{8} and \frac{4}{8} have the same denominator, subtract them by subtracting their numerators.
-5-2\left(-\frac{3}{8}\right)
Subtract 4 from 1 to get -3.
-5-\frac{2\left(-3\right)}{8}
Express 2\left(-\frac{3}{8}\right) as a single fraction.
-5-\frac{-6}{8}
Multiply 2 and -3 to get -6.
-5-\left(-\frac{3}{4}\right)
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
-5+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
-\frac{20}{4}+\frac{3}{4}
Convert -5 to fraction -\frac{20}{4}.
\frac{-20+3}{4}
Since -\frac{20}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-\frac{17}{4}
Add -20 and 3 to get -17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}