Solve for x (complex solution)
x=-\frac{\sqrt{107}i}{3}\approx -0-3.448026811i
x=\frac{\sqrt{107}i}{3}\approx 3.448026811i
Graph
Share
Copied to clipboard
-2\left(-\frac{4}{2}-\frac{2\times 3^{-1}}{2}\right)^{2}=x^{2}+1
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
-2\left(-2-\frac{2\times 3^{-1}}{2}\right)^{2}=x^{2}+1
Divide 4 by 2 to get 2.
-2\left(-2-3^{-1}\right)^{2}=x^{2}+1
Cancel out 2 and 2.
-2\left(-2-\frac{1}{3}\right)^{2}=x^{2}+1
Calculate 3 to the power of -1 and get \frac{1}{3}.
-2\left(-\frac{7}{3}\right)^{2}=x^{2}+1
Subtract \frac{1}{3} from -2 to get -\frac{7}{3}.
-2\times \frac{49}{9}=x^{2}+1
Calculate -\frac{7}{3} to the power of 2 and get \frac{49}{9}.
-\frac{98}{9}=x^{2}+1
Multiply -2 and \frac{49}{9} to get -\frac{98}{9}.
x^{2}+1=-\frac{98}{9}
Swap sides so that all variable terms are on the left hand side.
x^{2}=-\frac{98}{9}-1
Subtract 1 from both sides.
x^{2}=-\frac{107}{9}
Subtract 1 from -\frac{98}{9} to get -\frac{107}{9}.
x=\frac{\sqrt{107}i}{3} x=-\frac{\sqrt{107}i}{3}
The equation is now solved.
-2\left(-\frac{4}{2}-\frac{2\times 3^{-1}}{2}\right)^{2}=x^{2}+1
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
-2\left(-2-\frac{2\times 3^{-1}}{2}\right)^{2}=x^{2}+1
Divide 4 by 2 to get 2.
-2\left(-2-3^{-1}\right)^{2}=x^{2}+1
Cancel out 2 and 2.
-2\left(-2-\frac{1}{3}\right)^{2}=x^{2}+1
Calculate 3 to the power of -1 and get \frac{1}{3}.
-2\left(-\frac{7}{3}\right)^{2}=x^{2}+1
Subtract \frac{1}{3} from -2 to get -\frac{7}{3}.
-2\times \frac{49}{9}=x^{2}+1
Calculate -\frac{7}{3} to the power of 2 and get \frac{49}{9}.
-\frac{98}{9}=x^{2}+1
Multiply -2 and \frac{49}{9} to get -\frac{98}{9}.
x^{2}+1=-\frac{98}{9}
Swap sides so that all variable terms are on the left hand side.
x^{2}+1+\frac{98}{9}=0
Add \frac{98}{9} to both sides.
x^{2}+\frac{107}{9}=0
Add 1 and \frac{98}{9} to get \frac{107}{9}.
x=\frac{0±\sqrt{0^{2}-4\times \frac{107}{9}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and \frac{107}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{107}{9}}}{2}
Square 0.
x=\frac{0±\sqrt{-\frac{428}{9}}}{2}
Multiply -4 times \frac{107}{9}.
x=\frac{0±\frac{2\sqrt{107}i}{3}}{2}
Take the square root of -\frac{428}{9}.
x=\frac{\sqrt{107}i}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{107}i}{3}}{2} when ± is plus.
x=-\frac{\sqrt{107}i}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{107}i}{3}}{2} when ± is minus.
x=\frac{\sqrt{107}i}{3} x=-\frac{\sqrt{107}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}