Solve for y
y=\frac{5000\sqrt{853}-155000}{9}\approx -996.575703878
y=\frac{-5000\sqrt{853}-155000}{9}\approx -33447.868740567
Graph
Share
Copied to clipboard
-18y^{2}-620000y-600000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-620000\right)±\sqrt{\left(-620000\right)^{2}-4\left(-18\right)\left(-600000000\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, -620000 for b, and -600000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-620000\right)±\sqrt{384400000000-4\left(-18\right)\left(-600000000\right)}}{2\left(-18\right)}
Square -620000.
y=\frac{-\left(-620000\right)±\sqrt{384400000000+72\left(-600000000\right)}}{2\left(-18\right)}
Multiply -4 times -18.
y=\frac{-\left(-620000\right)±\sqrt{384400000000-43200000000}}{2\left(-18\right)}
Multiply 72 times -600000000.
y=\frac{-\left(-620000\right)±\sqrt{341200000000}}{2\left(-18\right)}
Add 384400000000 to -43200000000.
y=\frac{-\left(-620000\right)±20000\sqrt{853}}{2\left(-18\right)}
Take the square root of 341200000000.
y=\frac{620000±20000\sqrt{853}}{2\left(-18\right)}
The opposite of -620000 is 620000.
y=\frac{620000±20000\sqrt{853}}{-36}
Multiply 2 times -18.
y=\frac{20000\sqrt{853}+620000}{-36}
Now solve the equation y=\frac{620000±20000\sqrt{853}}{-36} when ± is plus. Add 620000 to 20000\sqrt{853}.
y=\frac{-5000\sqrt{853}-155000}{9}
Divide 620000+20000\sqrt{853} by -36.
y=\frac{620000-20000\sqrt{853}}{-36}
Now solve the equation y=\frac{620000±20000\sqrt{853}}{-36} when ± is minus. Subtract 20000\sqrt{853} from 620000.
y=\frac{5000\sqrt{853}-155000}{9}
Divide 620000-20000\sqrt{853} by -36.
y=\frac{-5000\sqrt{853}-155000}{9} y=\frac{5000\sqrt{853}-155000}{9}
The equation is now solved.
-18y^{2}-620000y-600000000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-18y^{2}-620000y-600000000-\left(-600000000\right)=-\left(-600000000\right)
Add 600000000 to both sides of the equation.
-18y^{2}-620000y=-\left(-600000000\right)
Subtracting -600000000 from itself leaves 0.
-18y^{2}-620000y=600000000
Subtract -600000000 from 0.
\frac{-18y^{2}-620000y}{-18}=\frac{600000000}{-18}
Divide both sides by -18.
y^{2}+\left(-\frac{620000}{-18}\right)y=\frac{600000000}{-18}
Dividing by -18 undoes the multiplication by -18.
y^{2}+\frac{310000}{9}y=\frac{600000000}{-18}
Reduce the fraction \frac{-620000}{-18} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{310000}{9}y=-\frac{100000000}{3}
Reduce the fraction \frac{600000000}{-18} to lowest terms by extracting and canceling out 6.
y^{2}+\frac{310000}{9}y+\left(\frac{155000}{9}\right)^{2}=-\frac{100000000}{3}+\left(\frac{155000}{9}\right)^{2}
Divide \frac{310000}{9}, the coefficient of the x term, by 2 to get \frac{155000}{9}. Then add the square of \frac{155000}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{310000}{9}y+\frac{24025000000}{81}=-\frac{100000000}{3}+\frac{24025000000}{81}
Square \frac{155000}{9} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{310000}{9}y+\frac{24025000000}{81}=\frac{21325000000}{81}
Add -\frac{100000000}{3} to \frac{24025000000}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{155000}{9}\right)^{2}=\frac{21325000000}{81}
Factor y^{2}+\frac{310000}{9}y+\frac{24025000000}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{155000}{9}\right)^{2}}=\sqrt{\frac{21325000000}{81}}
Take the square root of both sides of the equation.
y+\frac{155000}{9}=\frac{5000\sqrt{853}}{9} y+\frac{155000}{9}=-\frac{5000\sqrt{853}}{9}
Simplify.
y=\frac{5000\sqrt{853}-155000}{9} y=\frac{-5000\sqrt{853}-155000}{9}
Subtract \frac{155000}{9} from both sides of the equation.
x ^ 2 +\frac{310000}{9}x +\frac{100000000}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{310000}{9} rs = \frac{100000000}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{155000}{9} - u s = -\frac{155000}{9} + u
Two numbers r and s sum up to -\frac{310000}{9} exactly when the average of the two numbers is \frac{1}{2}*-\frac{310000}{9} = -\frac{155000}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{155000}{9} - u) (-\frac{155000}{9} + u) = \frac{100000000}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{100000000}{3}
\frac{134191040}{81} - u^2 = \frac{100000000}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{100000000}{3}-\frac{134191040}{81} = -\frac{13177664}{9}
Simplify the expression by subtracting \frac{134191040}{81} on both sides
u^2 = \frac{13177664}{9} u = \pm\sqrt{\frac{13177664}{9}} = \pm \frac{\sqrt{13177664}}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{155000}{9} - \frac{\sqrt{13177664}}{3} = -33447.869 s = -\frac{155000}{9} + \frac{\sqrt{13177664}}{3} = -996.576
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}