Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

18\left(-u^{2}+6u\right)
Factor out 18.
u\left(-u+6\right)
Consider -u^{2}+6u. Factor out u.
18u\left(-u+6\right)
Rewrite the complete factored expression.
-18u^{2}+108u=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
u=\frac{-108±\sqrt{108^{2}}}{2\left(-18\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-108±108}{2\left(-18\right)}
Take the square root of 108^{2}.
u=\frac{-108±108}{-36}
Multiply 2 times -18.
u=\frac{0}{-36}
Now solve the equation u=\frac{-108±108}{-36} when ± is plus. Add -108 to 108.
u=0
Divide 0 by -36.
u=-\frac{216}{-36}
Now solve the equation u=\frac{-108±108}{-36} when ± is minus. Subtract 108 from -108.
u=6
Divide -216 by -36.
-18u^{2}+108u=-18u\left(u-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 6 for x_{2}.