Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-18}{-2}=\left(x+4\right)^{2}
Divide both sides by -2.
9=\left(x+4\right)^{2}
Divide -18 by -2 to get 9.
9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=9
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x+16-9=0
Subtract 9 from both sides.
x^{2}+8x+7=0
Subtract 9 from 16 to get 7.
a+b=8 ab=7
To solve the equation, factor x^{2}+8x+7 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=1 b=7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(x+1\right)\left(x+7\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-1 x=-7
To find equation solutions, solve x+1=0 and x+7=0.
\frac{-18}{-2}=\left(x+4\right)^{2}
Divide both sides by -2.
9=\left(x+4\right)^{2}
Divide -18 by -2 to get 9.
9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=9
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x+16-9=0
Subtract 9 from both sides.
x^{2}+8x+7=0
Subtract 9 from 16 to get 7.
a+b=8 ab=1\times 7=7
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+7. To find a and b, set up a system to be solved.
a=1 b=7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(x^{2}+x\right)+\left(7x+7\right)
Rewrite x^{2}+8x+7 as \left(x^{2}+x\right)+\left(7x+7\right).
x\left(x+1\right)+7\left(x+1\right)
Factor out x in the first and 7 in the second group.
\left(x+1\right)\left(x+7\right)
Factor out common term x+1 by using distributive property.
x=-1 x=-7
To find equation solutions, solve x+1=0 and x+7=0.
\frac{-18}{-2}=\left(x+4\right)^{2}
Divide both sides by -2.
9=\left(x+4\right)^{2}
Divide -18 by -2 to get 9.
9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=9
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x+16-9=0
Subtract 9 from both sides.
x^{2}+8x+7=0
Subtract 9 from 16 to get 7.
x=\frac{-8±\sqrt{8^{2}-4\times 7}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 7}}{2}
Square 8.
x=\frac{-8±\sqrt{64-28}}{2}
Multiply -4 times 7.
x=\frac{-8±\sqrt{36}}{2}
Add 64 to -28.
x=\frac{-8±6}{2}
Take the square root of 36.
x=-\frac{2}{2}
Now solve the equation x=\frac{-8±6}{2} when ± is plus. Add -8 to 6.
x=-1
Divide -2 by 2.
x=-\frac{14}{2}
Now solve the equation x=\frac{-8±6}{2} when ± is minus. Subtract 6 from -8.
x=-7
Divide -14 by 2.
x=-1 x=-7
The equation is now solved.
\frac{-18}{-2}=\left(x+4\right)^{2}
Divide both sides by -2.
9=\left(x+4\right)^{2}
Divide -18 by -2 to get 9.
9=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=9
Swap sides so that all variable terms are on the left hand side.
\left(x+4\right)^{2}=9
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+4=3 x+4=-3
Simplify.
x=-1 x=-7
Subtract 4 from both sides of the equation.