Solve for z
z=\frac{-18\sqrt{26}i+12}{17}\approx 0.705882353-5.398961838i
z=\frac{12+18\sqrt{26}i}{17}\approx 0.705882353+5.398961838i
Share
Copied to clipboard
-17z^{2}+24z=504
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-17z^{2}+24z-504=504-504
Subtract 504 from both sides of the equation.
-17z^{2}+24z-504=0
Subtracting 504 from itself leaves 0.
z=\frac{-24±\sqrt{24^{2}-4\left(-17\right)\left(-504\right)}}{2\left(-17\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -17 for a, 24 for b, and -504 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-24±\sqrt{576-4\left(-17\right)\left(-504\right)}}{2\left(-17\right)}
Square 24.
z=\frac{-24±\sqrt{576+68\left(-504\right)}}{2\left(-17\right)}
Multiply -4 times -17.
z=\frac{-24±\sqrt{576-34272}}{2\left(-17\right)}
Multiply 68 times -504.
z=\frac{-24±\sqrt{-33696}}{2\left(-17\right)}
Add 576 to -34272.
z=\frac{-24±36\sqrt{26}i}{2\left(-17\right)}
Take the square root of -33696.
z=\frac{-24±36\sqrt{26}i}{-34}
Multiply 2 times -17.
z=\frac{-24+36\sqrt{26}i}{-34}
Now solve the equation z=\frac{-24±36\sqrt{26}i}{-34} when ± is plus. Add -24 to 36i\sqrt{26}.
z=\frac{-18\sqrt{26}i+12}{17}
Divide -24+36i\sqrt{26} by -34.
z=\frac{-36\sqrt{26}i-24}{-34}
Now solve the equation z=\frac{-24±36\sqrt{26}i}{-34} when ± is minus. Subtract 36i\sqrt{26} from -24.
z=\frac{12+18\sqrt{26}i}{17}
Divide -24-36i\sqrt{26} by -34.
z=\frac{-18\sqrt{26}i+12}{17} z=\frac{12+18\sqrt{26}i}{17}
The equation is now solved.
-17z^{2}+24z=504
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-17z^{2}+24z}{-17}=\frac{504}{-17}
Divide both sides by -17.
z^{2}+\frac{24}{-17}z=\frac{504}{-17}
Dividing by -17 undoes the multiplication by -17.
z^{2}-\frac{24}{17}z=\frac{504}{-17}
Divide 24 by -17.
z^{2}-\frac{24}{17}z=-\frac{504}{17}
Divide 504 by -17.
z^{2}-\frac{24}{17}z+\left(-\frac{12}{17}\right)^{2}=-\frac{504}{17}+\left(-\frac{12}{17}\right)^{2}
Divide -\frac{24}{17}, the coefficient of the x term, by 2 to get -\frac{12}{17}. Then add the square of -\frac{12}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{24}{17}z+\frac{144}{289}=-\frac{504}{17}+\frac{144}{289}
Square -\frac{12}{17} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{24}{17}z+\frac{144}{289}=-\frac{8424}{289}
Add -\frac{504}{17} to \frac{144}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{12}{17}\right)^{2}=-\frac{8424}{289}
Factor z^{2}-\frac{24}{17}z+\frac{144}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{12}{17}\right)^{2}}=\sqrt{-\frac{8424}{289}}
Take the square root of both sides of the equation.
z-\frac{12}{17}=\frac{18\sqrt{26}i}{17} z-\frac{12}{17}=-\frac{18\sqrt{26}i}{17}
Simplify.
z=\frac{12+18\sqrt{26}i}{17} z=\frac{-18\sqrt{26}i+12}{17}
Add \frac{12}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}