Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

-17z^{2}+24z=504
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-17z^{2}+24z-504=504-504
Subtract 504 from both sides of the equation.
-17z^{2}+24z-504=0
Subtracting 504 from itself leaves 0.
z=\frac{-24±\sqrt{24^{2}-4\left(-17\right)\left(-504\right)}}{2\left(-17\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -17 for a, 24 for b, and -504 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-24±\sqrt{576-4\left(-17\right)\left(-504\right)}}{2\left(-17\right)}
Square 24.
z=\frac{-24±\sqrt{576+68\left(-504\right)}}{2\left(-17\right)}
Multiply -4 times -17.
z=\frac{-24±\sqrt{576-34272}}{2\left(-17\right)}
Multiply 68 times -504.
z=\frac{-24±\sqrt{-33696}}{2\left(-17\right)}
Add 576 to -34272.
z=\frac{-24±36\sqrt{26}i}{2\left(-17\right)}
Take the square root of -33696.
z=\frac{-24±36\sqrt{26}i}{-34}
Multiply 2 times -17.
z=\frac{-24+36\sqrt{26}i}{-34}
Now solve the equation z=\frac{-24±36\sqrt{26}i}{-34} when ± is plus. Add -24 to 36i\sqrt{26}.
z=\frac{-18\sqrt{26}i+12}{17}
Divide -24+36i\sqrt{26} by -34.
z=\frac{-36\sqrt{26}i-24}{-34}
Now solve the equation z=\frac{-24±36\sqrt{26}i}{-34} when ± is minus. Subtract 36i\sqrt{26} from -24.
z=\frac{12+18\sqrt{26}i}{17}
Divide -24-36i\sqrt{26} by -34.
z=\frac{-18\sqrt{26}i+12}{17} z=\frac{12+18\sqrt{26}i}{17}
The equation is now solved.
-17z^{2}+24z=504
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-17z^{2}+24z}{-17}=\frac{504}{-17}
Divide both sides by -17.
z^{2}+\frac{24}{-17}z=\frac{504}{-17}
Dividing by -17 undoes the multiplication by -17.
z^{2}-\frac{24}{17}z=\frac{504}{-17}
Divide 24 by -17.
z^{2}-\frac{24}{17}z=-\frac{504}{17}
Divide 504 by -17.
z^{2}-\frac{24}{17}z+\left(-\frac{12}{17}\right)^{2}=-\frac{504}{17}+\left(-\frac{12}{17}\right)^{2}
Divide -\frac{24}{17}, the coefficient of the x term, by 2 to get -\frac{12}{17}. Then add the square of -\frac{12}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{24}{17}z+\frac{144}{289}=-\frac{504}{17}+\frac{144}{289}
Square -\frac{12}{17} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{24}{17}z+\frac{144}{289}=-\frac{8424}{289}
Add -\frac{504}{17} to \frac{144}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{12}{17}\right)^{2}=-\frac{8424}{289}
Factor z^{2}-\frac{24}{17}z+\frac{144}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{12}{17}\right)^{2}}=\sqrt{-\frac{8424}{289}}
Take the square root of both sides of the equation.
z-\frac{12}{17}=\frac{18\sqrt{26}i}{17} z-\frac{12}{17}=-\frac{18\sqrt{26}i}{17}
Simplify.
z=\frac{12+18\sqrt{26}i}{17} z=\frac{-18\sqrt{26}i+12}{17}
Add \frac{12}{17} to both sides of the equation.