Factor
-\left(4x+1\right)\left(4x+5\right)
Evaluate
-16x^{2}-24x-5
Graph
Share
Copied to clipboard
a+b=-24 ab=-16\left(-5\right)=80
Factor the expression by grouping. First, the expression needs to be rewritten as -16x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,-80 -2,-40 -4,-20 -5,-16 -8,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 80.
-1-80=-81 -2-40=-42 -4-20=-24 -5-16=-21 -8-10=-18
Calculate the sum for each pair.
a=-4 b=-20
The solution is the pair that gives sum -24.
\left(-16x^{2}-4x\right)+\left(-20x-5\right)
Rewrite -16x^{2}-24x-5 as \left(-16x^{2}-4x\right)+\left(-20x-5\right).
4x\left(-4x-1\right)+5\left(-4x-1\right)
Factor out 4x in the first and 5 in the second group.
\left(-4x-1\right)\left(4x+5\right)
Factor out common term -4x-1 by using distributive property.
-16x^{2}-24x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-16\right)\left(-5\right)}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-16\right)\left(-5\right)}}{2\left(-16\right)}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576+64\left(-5\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-\left(-24\right)±\sqrt{576-320}}{2\left(-16\right)}
Multiply 64 times -5.
x=\frac{-\left(-24\right)±\sqrt{256}}{2\left(-16\right)}
Add 576 to -320.
x=\frac{-\left(-24\right)±16}{2\left(-16\right)}
Take the square root of 256.
x=\frac{24±16}{2\left(-16\right)}
The opposite of -24 is 24.
x=\frac{24±16}{-32}
Multiply 2 times -16.
x=\frac{40}{-32}
Now solve the equation x=\frac{24±16}{-32} when ± is plus. Add 24 to 16.
x=-\frac{5}{4}
Reduce the fraction \frac{40}{-32} to lowest terms by extracting and canceling out 8.
x=\frac{8}{-32}
Now solve the equation x=\frac{24±16}{-32} when ± is minus. Subtract 16 from 24.
x=-\frac{1}{4}
Reduce the fraction \frac{8}{-32} to lowest terms by extracting and canceling out 8.
-16x^{2}-24x-5=-16\left(x-\left(-\frac{5}{4}\right)\right)\left(x-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{4} for x_{1} and -\frac{1}{4} for x_{2}.
-16x^{2}-24x-5=-16\left(x+\frac{5}{4}\right)\left(x+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-16x^{2}-24x-5=-16\times \frac{-4x-5}{-4}\left(x+\frac{1}{4}\right)
Add \frac{5}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-16x^{2}-24x-5=-16\times \frac{-4x-5}{-4}\times \frac{-4x-1}{-4}
Add \frac{1}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-16x^{2}-24x-5=-16\times \frac{\left(-4x-5\right)\left(-4x-1\right)}{-4\left(-4\right)}
Multiply \frac{-4x-5}{-4} times \frac{-4x-1}{-4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-16x^{2}-24x-5=-16\times \frac{\left(-4x-5\right)\left(-4x-1\right)}{16}
Multiply -4 times -4.
-16x^{2}-24x-5=-\left(-4x-5\right)\left(-4x-1\right)
Cancel out 16, the greatest common factor in -16 and 16.
x ^ 2 +\frac{3}{2}x +\frac{5}{16} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{3}{2} rs = \frac{5}{16}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{4} - u s = -\frac{3}{4} + u
Two numbers r and s sum up to -\frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{3}{2} = -\frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{4} - u) (-\frac{3}{4} + u) = \frac{5}{16}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{16}
\frac{9}{16} - u^2 = \frac{5}{16}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{16}-\frac{9}{16} = -\frac{1}{4}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{4} - \frac{1}{2} = -1.250 s = -\frac{3}{4} + \frac{1}{2} = -0.250
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}