Factor
2\left(4-x\right)\left(8x+5\right)
Evaluate
40+54x-16x^{2}
Graph
Share
Copied to clipboard
2\left(-8x^{2}+27x+20\right)
Factor out 2.
a+b=27 ab=-8\times 20=-160
Consider -8x^{2}+27x+20. Factor the expression by grouping. First, the expression needs to be rewritten as -8x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
-1,160 -2,80 -4,40 -5,32 -8,20 -10,16
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -160.
-1+160=159 -2+80=78 -4+40=36 -5+32=27 -8+20=12 -10+16=6
Calculate the sum for each pair.
a=32 b=-5
The solution is the pair that gives sum 27.
\left(-8x^{2}+32x\right)+\left(-5x+20\right)
Rewrite -8x^{2}+27x+20 as \left(-8x^{2}+32x\right)+\left(-5x+20\right).
8x\left(-x+4\right)+5\left(-x+4\right)
Factor out 8x in the first and 5 in the second group.
\left(-x+4\right)\left(8x+5\right)
Factor out common term -x+4 by using distributive property.
2\left(-x+4\right)\left(8x+5\right)
Rewrite the complete factored expression.
-16x^{2}+54x+40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-54±\sqrt{54^{2}-4\left(-16\right)\times 40}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-54±\sqrt{2916-4\left(-16\right)\times 40}}{2\left(-16\right)}
Square 54.
x=\frac{-54±\sqrt{2916+64\times 40}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-54±\sqrt{2916+2560}}{2\left(-16\right)}
Multiply 64 times 40.
x=\frac{-54±\sqrt{5476}}{2\left(-16\right)}
Add 2916 to 2560.
x=\frac{-54±74}{2\left(-16\right)}
Take the square root of 5476.
x=\frac{-54±74}{-32}
Multiply 2 times -16.
x=\frac{20}{-32}
Now solve the equation x=\frac{-54±74}{-32} when ± is plus. Add -54 to 74.
x=-\frac{5}{8}
Reduce the fraction \frac{20}{-32} to lowest terms by extracting and canceling out 4.
x=-\frac{128}{-32}
Now solve the equation x=\frac{-54±74}{-32} when ± is minus. Subtract 74 from -54.
x=4
Divide -128 by -32.
-16x^{2}+54x+40=-16\left(x-\left(-\frac{5}{8}\right)\right)\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{8} for x_{1} and 4 for x_{2}.
-16x^{2}+54x+40=-16\left(x+\frac{5}{8}\right)\left(x-4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-16x^{2}+54x+40=-16\times \frac{-8x-5}{-8}\left(x-4\right)
Add \frac{5}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-16x^{2}+54x+40=2\left(-8x-5\right)\left(x-4\right)
Cancel out 8, the greatest common factor in -16 and 8.
x ^ 2 -\frac{27}{8}x -\frac{5}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{27}{8} rs = -\frac{5}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{27}{16} - u s = \frac{27}{16} + u
Two numbers r and s sum up to \frac{27}{8} exactly when the average of the two numbers is \frac{1}{2}*\frac{27}{8} = \frac{27}{16}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{27}{16} - u) (\frac{27}{16} + u) = -\frac{5}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{2}
\frac{729}{256} - u^2 = -\frac{5}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{2}-\frac{729}{256} = -\frac{1369}{256}
Simplify the expression by subtracting \frac{729}{256} on both sides
u^2 = \frac{1369}{256} u = \pm\sqrt{\frac{1369}{256}} = \pm \frac{37}{16}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{27}{16} - \frac{37}{16} = -0.625 s = \frac{27}{16} + \frac{37}{16} = 4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}