Solve for t
t=\sqrt{3}+3\approx 4.732050808
t=3-\sqrt{3}\approx 1.267949192
Share
Copied to clipboard
-16t^{2}+96t=96
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-16t^{2}+96t-96=96-96
Subtract 96 from both sides of the equation.
-16t^{2}+96t-96=0
Subtracting 96 from itself leaves 0.
t=\frac{-96±\sqrt{96^{2}-4\left(-16\right)\left(-96\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 96 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-96±\sqrt{9216-4\left(-16\right)\left(-96\right)}}{2\left(-16\right)}
Square 96.
t=\frac{-96±\sqrt{9216+64\left(-96\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-96±\sqrt{9216-6144}}{2\left(-16\right)}
Multiply 64 times -96.
t=\frac{-96±\sqrt{3072}}{2\left(-16\right)}
Add 9216 to -6144.
t=\frac{-96±32\sqrt{3}}{2\left(-16\right)}
Take the square root of 3072.
t=\frac{-96±32\sqrt{3}}{-32}
Multiply 2 times -16.
t=\frac{32\sqrt{3}-96}{-32}
Now solve the equation t=\frac{-96±32\sqrt{3}}{-32} when ± is plus. Add -96 to 32\sqrt{3}.
t=3-\sqrt{3}
Divide -96+32\sqrt{3} by -32.
t=\frac{-32\sqrt{3}-96}{-32}
Now solve the equation t=\frac{-96±32\sqrt{3}}{-32} when ± is minus. Subtract 32\sqrt{3} from -96.
t=\sqrt{3}+3
Divide -96-32\sqrt{3} by -32.
t=3-\sqrt{3} t=\sqrt{3}+3
The equation is now solved.
-16t^{2}+96t=96
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16t^{2}+96t}{-16}=\frac{96}{-16}
Divide both sides by -16.
t^{2}+\frac{96}{-16}t=\frac{96}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-6t=\frac{96}{-16}
Divide 96 by -16.
t^{2}-6t=-6
Divide 96 by -16.
t^{2}-6t+\left(-3\right)^{2}=-6+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-6t+9=-6+9
Square -3.
t^{2}-6t+9=3
Add -6 to 9.
\left(t-3\right)^{2}=3
Factor t^{2}-6t+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-3\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
t-3=\sqrt{3} t-3=-\sqrt{3}
Simplify.
t=\sqrt{3}+3 t=3-\sqrt{3}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}