Solve for t
t = \frac{\sqrt{609} + 23}{8} \approx 5.95974067
t=\frac{23-\sqrt{609}}{8}\approx -0.20974067
Share
Copied to clipboard
-16t^{2}+92t+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-92±\sqrt{92^{2}-4\left(-16\right)\times 20}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 92 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-92±\sqrt{8464-4\left(-16\right)\times 20}}{2\left(-16\right)}
Square 92.
t=\frac{-92±\sqrt{8464+64\times 20}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-92±\sqrt{8464+1280}}{2\left(-16\right)}
Multiply 64 times 20.
t=\frac{-92±\sqrt{9744}}{2\left(-16\right)}
Add 8464 to 1280.
t=\frac{-92±4\sqrt{609}}{2\left(-16\right)}
Take the square root of 9744.
t=\frac{-92±4\sqrt{609}}{-32}
Multiply 2 times -16.
t=\frac{4\sqrt{609}-92}{-32}
Now solve the equation t=\frac{-92±4\sqrt{609}}{-32} when ± is plus. Add -92 to 4\sqrt{609}.
t=\frac{23-\sqrt{609}}{8}
Divide -92+4\sqrt{609} by -32.
t=\frac{-4\sqrt{609}-92}{-32}
Now solve the equation t=\frac{-92±4\sqrt{609}}{-32} when ± is minus. Subtract 4\sqrt{609} from -92.
t=\frac{\sqrt{609}+23}{8}
Divide -92-4\sqrt{609} by -32.
t=\frac{23-\sqrt{609}}{8} t=\frac{\sqrt{609}+23}{8}
The equation is now solved.
-16t^{2}+92t+20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-16t^{2}+92t+20-20=-20
Subtract 20 from both sides of the equation.
-16t^{2}+92t=-20
Subtracting 20 from itself leaves 0.
\frac{-16t^{2}+92t}{-16}=-\frac{20}{-16}
Divide both sides by -16.
t^{2}+\frac{92}{-16}t=-\frac{20}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{23}{4}t=-\frac{20}{-16}
Reduce the fraction \frac{92}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{23}{4}t=\frac{5}{4}
Reduce the fraction \frac{-20}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{23}{4}t+\left(-\frac{23}{8}\right)^{2}=\frac{5}{4}+\left(-\frac{23}{8}\right)^{2}
Divide -\frac{23}{4}, the coefficient of the x term, by 2 to get -\frac{23}{8}. Then add the square of -\frac{23}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{23}{4}t+\frac{529}{64}=\frac{5}{4}+\frac{529}{64}
Square -\frac{23}{8} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{23}{4}t+\frac{529}{64}=\frac{609}{64}
Add \frac{5}{4} to \frac{529}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{23}{8}\right)^{2}=\frac{609}{64}
Factor t^{2}-\frac{23}{4}t+\frac{529}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{23}{8}\right)^{2}}=\sqrt{\frac{609}{64}}
Take the square root of both sides of the equation.
t-\frac{23}{8}=\frac{\sqrt{609}}{8} t-\frac{23}{8}=-\frac{\sqrt{609}}{8}
Simplify.
t=\frac{\sqrt{609}+23}{8} t=\frac{23-\sqrt{609}}{8}
Add \frac{23}{8} to both sides of the equation.
x ^ 2 -\frac{23}{4}x -\frac{5}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{23}{4} rs = -\frac{5}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{23}{8} - u s = \frac{23}{8} + u
Two numbers r and s sum up to \frac{23}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{23}{4} = \frac{23}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{23}{8} - u) (\frac{23}{8} + u) = -\frac{5}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{4}
\frac{529}{64} - u^2 = -\frac{5}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{4}-\frac{529}{64} = -\frac{609}{64}
Simplify the expression by subtracting \frac{529}{64} on both sides
u^2 = \frac{609}{64} u = \pm\sqrt{\frac{609}{64}} = \pm \frac{\sqrt{609}}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{23}{8} - \frac{\sqrt{609}}{8} = -0.210 s = \frac{23}{8} + \frac{\sqrt{609}}{8} = 5.960
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}