Solve for t
t = \frac{\sqrt{12385} + 79}{32} \approx 5.94649734
t=\frac{79-\sqrt{12385}}{32}\approx -1.00899734
Share
Copied to clipboard
-16t^{2}+80t+96-t=0
Subtract t from both sides.
-16t^{2}+79t+96=0
Combine 80t and -t to get 79t.
t=\frac{-79±\sqrt{79^{2}-4\left(-16\right)\times 96}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 79 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-79±\sqrt{6241-4\left(-16\right)\times 96}}{2\left(-16\right)}
Square 79.
t=\frac{-79±\sqrt{6241+64\times 96}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-79±\sqrt{6241+6144}}{2\left(-16\right)}
Multiply 64 times 96.
t=\frac{-79±\sqrt{12385}}{2\left(-16\right)}
Add 6241 to 6144.
t=\frac{-79±\sqrt{12385}}{-32}
Multiply 2 times -16.
t=\frac{\sqrt{12385}-79}{-32}
Now solve the equation t=\frac{-79±\sqrt{12385}}{-32} when ± is plus. Add -79 to \sqrt{12385}.
t=\frac{79-\sqrt{12385}}{32}
Divide -79+\sqrt{12385} by -32.
t=\frac{-\sqrt{12385}-79}{-32}
Now solve the equation t=\frac{-79±\sqrt{12385}}{-32} when ± is minus. Subtract \sqrt{12385} from -79.
t=\frac{\sqrt{12385}+79}{32}
Divide -79-\sqrt{12385} by -32.
t=\frac{79-\sqrt{12385}}{32} t=\frac{\sqrt{12385}+79}{32}
The equation is now solved.
-16t^{2}+80t+96-t=0
Subtract t from both sides.
-16t^{2}+79t+96=0
Combine 80t and -t to get 79t.
-16t^{2}+79t=-96
Subtract 96 from both sides. Anything subtracted from zero gives its negation.
\frac{-16t^{2}+79t}{-16}=-\frac{96}{-16}
Divide both sides by -16.
t^{2}+\frac{79}{-16}t=-\frac{96}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{79}{16}t=-\frac{96}{-16}
Divide 79 by -16.
t^{2}-\frac{79}{16}t=6
Divide -96 by -16.
t^{2}-\frac{79}{16}t+\left(-\frac{79}{32}\right)^{2}=6+\left(-\frac{79}{32}\right)^{2}
Divide -\frac{79}{16}, the coefficient of the x term, by 2 to get -\frac{79}{32}. Then add the square of -\frac{79}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{79}{16}t+\frac{6241}{1024}=6+\frac{6241}{1024}
Square -\frac{79}{32} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{79}{16}t+\frac{6241}{1024}=\frac{12385}{1024}
Add 6 to \frac{6241}{1024}.
\left(t-\frac{79}{32}\right)^{2}=\frac{12385}{1024}
Factor t^{2}-\frac{79}{16}t+\frac{6241}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{79}{32}\right)^{2}}=\sqrt{\frac{12385}{1024}}
Take the square root of both sides of the equation.
t-\frac{79}{32}=\frac{\sqrt{12385}}{32} t-\frac{79}{32}=-\frac{\sqrt{12385}}{32}
Simplify.
t=\frac{\sqrt{12385}+79}{32} t=\frac{79-\sqrt{12385}}{32}
Add \frac{79}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}