Solve for t
t = \frac{\sqrt{146}}{4} \approx 3.020761493
t = -\frac{\sqrt{146}}{4} \approx -3.020761493
Share
Copied to clipboard
-16t^{2}=-146
Subtract 146 from both sides. Anything subtracted from zero gives its negation.
t^{2}=\frac{-146}{-16}
Divide both sides by -16.
t^{2}=\frac{73}{8}
Reduce the fraction \frac{-146}{-16} to lowest terms by extracting and canceling out -2.
t=\frac{\sqrt{146}}{4} t=-\frac{\sqrt{146}}{4}
Take the square root of both sides of the equation.
-16t^{2}+146=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 146}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and 146 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-16\right)\times 146}}{2\left(-16\right)}
Square 0.
t=\frac{0±\sqrt{64\times 146}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{0±\sqrt{9344}}{2\left(-16\right)}
Multiply 64 times 146.
t=\frac{0±8\sqrt{146}}{2\left(-16\right)}
Take the square root of 9344.
t=\frac{0±8\sqrt{146}}{-32}
Multiply 2 times -16.
t=-\frac{\sqrt{146}}{4}
Now solve the equation t=\frac{0±8\sqrt{146}}{-32} when ± is plus.
t=\frac{\sqrt{146}}{4}
Now solve the equation t=\frac{0±8\sqrt{146}}{-32} when ± is minus.
t=-\frac{\sqrt{146}}{4} t=\frac{\sqrt{146}}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}