Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{-16}{\left(-2\right)^{4}}-\frac{\left(-3\right)^{2}}{-9}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{-16}{16}-\frac{\left(-3\right)^{2}}{-9}
Calculate -2 to the power of 4 and get 16.
-1-\frac{\left(-3\right)^{2}}{-9}
Divide -16 by 16 to get -1.
-1-\frac{9}{-9}
Calculate -3 to the power of 2 and get 9.
-1-\left(-1\right)
Divide 9 by -9 to get -1.
-1+1
The opposite of -1 is 1.
0
Add -1 and 1 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}