Evaluate
6a+20
Expand
6a+20
Share
Copied to clipboard
-15\left(-\frac{3\times 2a}{15}-\frac{4\times 5}{15}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply -\frac{2a}{5} times \frac{3}{3}. Multiply \frac{4}{3} times \frac{5}{5}.
-15\times \frac{-3\times 2a-4\times 5}{15}
Since -\frac{3\times 2a}{15} and \frac{4\times 5}{15} have the same denominator, subtract them by subtracting their numerators.
-15\times \frac{-6a-20}{15}
Do the multiplications in -3\times 2a-4\times 5.
-\left(-6a-20\right)
Cancel out 15 and 15.
-\left(-6a\right)-\left(-20\right)
To find the opposite of -6a-20, find the opposite of each term.
6a-\left(-20\right)
The opposite of -6a is 6a.
6a+20
The opposite of -20 is 20.
-15\left(-\frac{3\times 2a}{15}-\frac{4\times 5}{15}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply -\frac{2a}{5} times \frac{3}{3}. Multiply \frac{4}{3} times \frac{5}{5}.
-15\times \frac{-3\times 2a-4\times 5}{15}
Since -\frac{3\times 2a}{15} and \frac{4\times 5}{15} have the same denominator, subtract them by subtracting their numerators.
-15\times \frac{-6a-20}{15}
Do the multiplications in -3\times 2a-4\times 5.
-\left(-6a-20\right)
Cancel out 15 and 15.
-\left(-6a\right)-\left(-20\right)
To find the opposite of -6a-20, find the opposite of each term.
6a-\left(-20\right)
The opposite of -6a is 6a.
6a+20
The opposite of -20 is 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}