Solve for x
x=\sqrt{7}+2\approx 4.645751311
x=2-\sqrt{7}\approx -0.645751311
Graph
Share
Copied to clipboard
20x-5x^{2}=-15
Swap sides so that all variable terms are on the left hand side.
20x-5x^{2}+15=0
Add 15 to both sides.
-5x^{2}+20x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-5\right)\times 15}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 20 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-5\right)\times 15}}{2\left(-5\right)}
Square 20.
x=\frac{-20±\sqrt{400+20\times 15}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-20±\sqrt{400+300}}{2\left(-5\right)}
Multiply 20 times 15.
x=\frac{-20±\sqrt{700}}{2\left(-5\right)}
Add 400 to 300.
x=\frac{-20±10\sqrt{7}}{2\left(-5\right)}
Take the square root of 700.
x=\frac{-20±10\sqrt{7}}{-10}
Multiply 2 times -5.
x=\frac{10\sqrt{7}-20}{-10}
Now solve the equation x=\frac{-20±10\sqrt{7}}{-10} when ± is plus. Add -20 to 10\sqrt{7}.
x=2-\sqrt{7}
Divide -20+10\sqrt{7} by -10.
x=\frac{-10\sqrt{7}-20}{-10}
Now solve the equation x=\frac{-20±10\sqrt{7}}{-10} when ± is minus. Subtract 10\sqrt{7} from -20.
x=\sqrt{7}+2
Divide -20-10\sqrt{7} by -10.
x=2-\sqrt{7} x=\sqrt{7}+2
The equation is now solved.
20x-5x^{2}=-15
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+20x=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+20x}{-5}=-\frac{15}{-5}
Divide both sides by -5.
x^{2}+\frac{20}{-5}x=-\frac{15}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-4x=-\frac{15}{-5}
Divide 20 by -5.
x^{2}-4x=3
Divide -15 by -5.
x^{2}-4x+\left(-2\right)^{2}=3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=3+4
Square -2.
x^{2}-4x+4=7
Add 3 to 4.
\left(x-2\right)^{2}=7
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-2=\sqrt{7} x-2=-\sqrt{7}
Simplify.
x=\sqrt{7}+2 x=2-\sqrt{7}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}