Factor
\left(4-7x\right)\left(2x-3\right)
Evaluate
\left(4-7x\right)\left(2x-3\right)
Graph
Share
Copied to clipboard
a+b=29 ab=-14\left(-12\right)=168
Factor the expression by grouping. First, the expression needs to be rewritten as -14x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,168 2,84 3,56 4,42 6,28 7,24 8,21 12,14
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 168.
1+168=169 2+84=86 3+56=59 4+42=46 6+28=34 7+24=31 8+21=29 12+14=26
Calculate the sum for each pair.
a=21 b=8
The solution is the pair that gives sum 29.
\left(-14x^{2}+21x\right)+\left(8x-12\right)
Rewrite -14x^{2}+29x-12 as \left(-14x^{2}+21x\right)+\left(8x-12\right).
-7x\left(2x-3\right)+4\left(2x-3\right)
Factor out -7x in the first and 4 in the second group.
\left(2x-3\right)\left(-7x+4\right)
Factor out common term 2x-3 by using distributive property.
-14x^{2}+29x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-29±\sqrt{29^{2}-4\left(-14\right)\left(-12\right)}}{2\left(-14\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-29±\sqrt{841-4\left(-14\right)\left(-12\right)}}{2\left(-14\right)}
Square 29.
x=\frac{-29±\sqrt{841+56\left(-12\right)}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-29±\sqrt{841-672}}{2\left(-14\right)}
Multiply 56 times -12.
x=\frac{-29±\sqrt{169}}{2\left(-14\right)}
Add 841 to -672.
x=\frac{-29±13}{2\left(-14\right)}
Take the square root of 169.
x=\frac{-29±13}{-28}
Multiply 2 times -14.
x=-\frac{16}{-28}
Now solve the equation x=\frac{-29±13}{-28} when ± is plus. Add -29 to 13.
x=\frac{4}{7}
Reduce the fraction \frac{-16}{-28} to lowest terms by extracting and canceling out 4.
x=-\frac{42}{-28}
Now solve the equation x=\frac{-29±13}{-28} when ± is minus. Subtract 13 from -29.
x=\frac{3}{2}
Reduce the fraction \frac{-42}{-28} to lowest terms by extracting and canceling out 14.
-14x^{2}+29x-12=-14\left(x-\frac{4}{7}\right)\left(x-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{7} for x_{1} and \frac{3}{2} for x_{2}.
-14x^{2}+29x-12=-14\times \frac{-7x+4}{-7}\left(x-\frac{3}{2}\right)
Subtract \frac{4}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-14x^{2}+29x-12=-14\times \frac{-7x+4}{-7}\times \frac{-2x+3}{-2}
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-14x^{2}+29x-12=-14\times \frac{\left(-7x+4\right)\left(-2x+3\right)}{-7\left(-2\right)}
Multiply \frac{-7x+4}{-7} times \frac{-2x+3}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-14x^{2}+29x-12=-14\times \frac{\left(-7x+4\right)\left(-2x+3\right)}{14}
Multiply -7 times -2.
-14x^{2}+29x-12=-\left(-7x+4\right)\left(-2x+3\right)
Cancel out 14, the greatest common factor in -14 and 14.
x ^ 2 -\frac{29}{14}x +\frac{6}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{29}{14} rs = \frac{6}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{29}{28} - u s = \frac{29}{28} + u
Two numbers r and s sum up to \frac{29}{14} exactly when the average of the two numbers is \frac{1}{2}*\frac{29}{14} = \frac{29}{28}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{29}{28} - u) (\frac{29}{28} + u) = \frac{6}{7}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{6}{7}
\frac{841}{784} - u^2 = \frac{6}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{6}{7}-\frac{841}{784} = -\frac{169}{784}
Simplify the expression by subtracting \frac{841}{784} on both sides
u^2 = \frac{169}{784} u = \pm\sqrt{\frac{169}{784}} = \pm \frac{13}{28}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{29}{28} - \frac{13}{28} = 0.571 s = \frac{29}{28} + \frac{13}{28} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}