- 14 = \frac { n } { 2 } [ - 2 n + 10 )
Solve for n
n=-2
n=7
Share
Copied to clipboard
-28=n\left(-2n+10\right)
Multiply both sides of the equation by 2.
-28=-2n^{2}+10n
Use the distributive property to multiply n by -2n+10.
-2n^{2}+10n=-28
Swap sides so that all variable terms are on the left hand side.
-2n^{2}+10n+28=0
Add 28 to both sides.
n=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\times 28}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 10 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-10±\sqrt{100-4\left(-2\right)\times 28}}{2\left(-2\right)}
Square 10.
n=\frac{-10±\sqrt{100+8\times 28}}{2\left(-2\right)}
Multiply -4 times -2.
n=\frac{-10±\sqrt{100+224}}{2\left(-2\right)}
Multiply 8 times 28.
n=\frac{-10±\sqrt{324}}{2\left(-2\right)}
Add 100 to 224.
n=\frac{-10±18}{2\left(-2\right)}
Take the square root of 324.
n=\frac{-10±18}{-4}
Multiply 2 times -2.
n=\frac{8}{-4}
Now solve the equation n=\frac{-10±18}{-4} when ± is plus. Add -10 to 18.
n=-2
Divide 8 by -4.
n=-\frac{28}{-4}
Now solve the equation n=\frac{-10±18}{-4} when ± is minus. Subtract 18 from -10.
n=7
Divide -28 by -4.
n=-2 n=7
The equation is now solved.
-28=n\left(-2n+10\right)
Multiply both sides of the equation by 2.
-28=-2n^{2}+10n
Use the distributive property to multiply n by -2n+10.
-2n^{2}+10n=-28
Swap sides so that all variable terms are on the left hand side.
\frac{-2n^{2}+10n}{-2}=-\frac{28}{-2}
Divide both sides by -2.
n^{2}+\frac{10}{-2}n=-\frac{28}{-2}
Dividing by -2 undoes the multiplication by -2.
n^{2}-5n=-\frac{28}{-2}
Divide 10 by -2.
n^{2}-5n=14
Divide -28 by -2.
n^{2}-5n+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-5n+\frac{25}{4}=14+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-5n+\frac{25}{4}=\frac{81}{4}
Add 14 to \frac{25}{4}.
\left(n-\frac{5}{2}\right)^{2}=\frac{81}{4}
Factor n^{2}-5n+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
n-\frac{5}{2}=\frac{9}{2} n-\frac{5}{2}=-\frac{9}{2}
Simplify.
n=7 n=-2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}