Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

13\left(-x^{2}-x\right)
Factor out 13.
x\left(-x-1\right)
Consider -x^{2}-x. Factor out x.
13x\left(-x-1\right)
Rewrite the complete factored expression.
-13x^{2}-13x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2\left(-13\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±13}{2\left(-13\right)}
Take the square root of \left(-13\right)^{2}.
x=\frac{13±13}{2\left(-13\right)}
The opposite of -13 is 13.
x=\frac{13±13}{-26}
Multiply 2 times -13.
x=\frac{26}{-26}
Now solve the equation x=\frac{13±13}{-26} when ± is plus. Add 13 to 13.
x=-1
Divide 26 by -26.
x=\frac{0}{-26}
Now solve the equation x=\frac{13±13}{-26} when ± is minus. Subtract 13 from 13.
x=0
Divide 0 by -26.
-13x^{2}-13x=-13\left(x-\left(-1\right)\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and 0 for x_{2}.
-13x^{2}-13x=-13\left(x+1\right)x
Simplify all the expressions of the form p-\left(-q\right) to p+q.